Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHaitsiukevich, Katsiarynaen_US
dc.contributor.authorPoyraz, Onuren_US
dc.contributor.authorMarttinen, Pekkaen_US
dc.contributor.authorIlin, Alexanderen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Marttinen P.en
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.groupauthorComputer Science Professors of Practiceen
dc.date.accessioned2024-12-17T16:22:31Z
dc.date.available2024-12-17T16:22:31Z
dc.date.issued2024-09en_US
dc.description| openaire: EC/H2020/101016775/EU//INTERVENE
dc.description.abstractThis paper explores the efficacy of diffusion-based generative models as neural operators for partial differential equations (PDEs). Neural operators are neural networks that learn a mapping from the parameter space to the solution space of PDEs from data, and they can also solve the inverse problem of estimating the parameter from the solution. Diffusion models excel in many domains, but their potential as neural operators has not been thoroughly explored. In this work, we show that diffusion-based generative models exhibit many properties favourable for neural operators, and they can effectively generate the solution of a PDE conditionally on the parameter or recover the unobserved parts of the system. We propose to train a single model adaptable to multiple tasks, by alternating between the tasks during training. In our experiments with multiple realistic dynamical systems, diffusion models outperform other neural operators. Furthermore, we demonstrate how the probabilistic diffusion model can elegantly deal with systems which are only partially identifiable, by producing samples corresponding to the different possible solutions.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHaitsiukevich, K, Poyraz, O, Marttinen, P & Ilin, A 2024, Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems. in 34th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2024 - Proceedings. IEEE International Workshop on Machine Learning for Signal Processing, IEEE, IEEE International Workshop on Machine Learning for Signal Processing, London, United Kingdom, 22/09/2024. https://doi.org/10.1109/MLSP58920.2024.10734762en
dc.identifier.doi10.1109/MLSP58920.2024.10734762en_US
dc.identifier.isbn979-8-3503-7225-0
dc.identifier.issn2161-0371
dc.identifier.otherPURE UUID: 92bd6ddf-3480-40e6-b40b-be59e09e9edaen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/92bd6ddf-3480-40e6-b40b-be59e09e9edaen_US
dc.identifier.otherPURE LINK: https://arxiv.org/abs/2405.07097en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85205333470&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/167385825/Diffusion_models_as_probabilistic_neural_operators_for_recovering_unobserved_states_of_dynamical_systems.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/132411
dc.identifier.urnURN:NBN:fi:aalto-202412177888
dc.language.isoenen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/101016775/EU//INTERVENEen_US
dc.relation.ispartofIEEE International Workshop on Machine Learning for Signal Processingen
dc.relation.ispartofseries34th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2024 - Proceedingsen
dc.relation.ispartofseriesIEEE International Workshop on Machine Learning for Signal Processingen
dc.rightsopenAccessen
dc.subject.keywordDiffusion Modelsen_US
dc.subject.keywordNeural Operatoren_US
dc.subject.keywordPhysical Systems Modellingen_US
dc.subject.keywordPartial Differential Equationsen_US
dc.titleDiffusion models as probabilistic neural operators for recovering unobserved states of dynamical systemsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files