Pixel and Feature Transfer Fusion for Unsupervised Cross-Dataset Person Reidentification

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorYang, Yangen_US
dc.contributor.authorWang, Guan'anen_US
dc.contributor.authorTiwari, Prayagen_US
dc.contributor.authorPandey, Hari Mohanen_US
dc.contributor.authorLei, Zhenen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Marttinen P.en
dc.contributor.organizationCAS - Institute of Automationen_US
dc.contributor.organizationEdge Hill Universityen_US
dc.date.accessioned2021-12-31T13:56:32Z
dc.date.available2021-12-31T13:56:32Z
dc.date.issued2025-03-01
dc.description| openaire: EC/H2020/101016775/EU//INTERVENE
dc.description.abstractRecently, unsupervised cross-dataset person reidentification (Re-ID) has attracted more and more attention, which aims to transfer knowledge of a labeled source domain to an unlabeled target domain. There are two common frameworks: one is pixel-alignment of transferring low-level knowledge, and the other is feature-alignment of transferring high-level knowledge. In this article, we propose a novel recurrent autoencoder (RAE) framework to unify these two kinds of methods and inherit their merits. Specifically, the proposed RAE includes three modules, i.e., a feature-transfer (FT) module, a pixel-transfer (PT) module, and a fusion module. The FT module utilizes an encoder to map source and target images to a shared feature space. In the space, not only features are identity-discriminative but also the gap between source and target features is reduced. The PT module takes a decoder to reconstruct original images with its features. Here, we hope that the images reconstructed from target features are in the source style. Thus, the low-level knowledge can be propagated to the target domain. After transferring both high- and low-level knowledge with the two proposed modules above, we design another bilinear pooling layer to fuse both kinds of knowledge. Extensive experiments on Market-1501, DukeMTMC-ReID, and MSMT17 datasets show that our method significantly outperforms either pixel-alignment or feature-alignment Re-ID methods and achieves new state-of-the-art results.en
dc.description.versionPeer revieweden
dc.format.extent13
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationYang, Y, Wang, G, Tiwari, P, Pandey, H M & Lei, Z 2025, 'Pixel and Feature Transfer Fusion for Unsupervised Cross-Dataset Person Reidentification', IEEE Transactions on Neural Networks and Learning Systems, vol. 36, no. 3, pp. 4220-4232. https://doi.org/10.1109/TNNLS.2021.3128269en
dc.identifier.doi10.1109/TNNLS.2021.3128269en_US
dc.identifier.issn2162-237X
dc.identifier.issn2162-2388
dc.identifier.otherPURE UUID: 43c8da96-5007-4cfc-bc8d-f4e98eb6861den_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/43c8da96-5007-4cfc-bc8d-f4e98eb6861den_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85120578282&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/76831946/IEEE_TNNLS.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/111968
dc.identifier.urnURN:NBN:fi:aalto-2021123111108
dc.language.isoenen
dc.publisherIEEE
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/101016775/EU//INTERVENE
dc.relation.ispartofseriesIEEE Transactions on Neural Networks and Learning Systemsen
dc.relation.ispartofseriesVolume 36, issue 3, pp. 4220-4232en
dc.rightsopenAccessen
dc.subject.keywordAdaptation modelsen_US
dc.subject.keywordCamerasen_US
dc.subject.keywordData modelsen_US
dc.subject.keywordFeature fusionen_US
dc.subject.keywordImage reconstruction
dc.subject.keywordLighting
dc.subject.keywordMeasurement
dc.subject.keywordScalability
dc.subject.keywordgenerate adversarial nets
dc.subject.keywordperson reidentification (Re-ID)
dc.subject.keywordunsupervised learning.en_US
dc.titlePixel and Feature Transfer Fusion for Unsupervised Cross-Dataset Person Reidentificationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files