Pixel and Feature Transfer Fusion for Unsupervised Cross-Dataset Person Reidentification
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Yang, Yang | en_US |
dc.contributor.author | Wang, Guan'an | en_US |
dc.contributor.author | Tiwari, Prayag | en_US |
dc.contributor.author | Pandey, Hari Mohan | en_US |
dc.contributor.author | Lei, Zhen | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Marttinen P. | en |
dc.contributor.organization | CAS - Institute of Automation | en_US |
dc.contributor.organization | Edge Hill University | en_US |
dc.date.accessioned | 2021-12-31T13:56:32Z | |
dc.date.available | 2021-12-31T13:56:32Z | |
dc.date.issued | 2025-03-01 | |
dc.description | | openaire: EC/H2020/101016775/EU//INTERVENE | |
dc.description.abstract | Recently, unsupervised cross-dataset person reidentification (Re-ID) has attracted more and more attention, which aims to transfer knowledge of a labeled source domain to an unlabeled target domain. There are two common frameworks: one is pixel-alignment of transferring low-level knowledge, and the other is feature-alignment of transferring high-level knowledge. In this article, we propose a novel recurrent autoencoder (RAE) framework to unify these two kinds of methods and inherit their merits. Specifically, the proposed RAE includes three modules, i.e., a feature-transfer (FT) module, a pixel-transfer (PT) module, and a fusion module. The FT module utilizes an encoder to map source and target images to a shared feature space. In the space, not only features are identity-discriminative but also the gap between source and target features is reduced. The PT module takes a decoder to reconstruct original images with its features. Here, we hope that the images reconstructed from target features are in the source style. Thus, the low-level knowledge can be propagated to the target domain. After transferring both high- and low-level knowledge with the two proposed modules above, we design another bilinear pooling layer to fuse both kinds of knowledge. Extensive experiments on Market-1501, DukeMTMC-ReID, and MSMT17 datasets show that our method significantly outperforms either pixel-alignment or feature-alignment Re-ID methods and achieves new state-of-the-art results. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 13 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Yang, Y, Wang, G, Tiwari, P, Pandey, H M & Lei, Z 2025, 'Pixel and Feature Transfer Fusion for Unsupervised Cross-Dataset Person Reidentification', IEEE Transactions on Neural Networks and Learning Systems, vol. 36, no. 3, pp. 4220-4232. https://doi.org/10.1109/TNNLS.2021.3128269 | en |
dc.identifier.doi | 10.1109/TNNLS.2021.3128269 | en_US |
dc.identifier.issn | 2162-237X | |
dc.identifier.issn | 2162-2388 | |
dc.identifier.other | PURE UUID: 43c8da96-5007-4cfc-bc8d-f4e98eb6861d | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/43c8da96-5007-4cfc-bc8d-f4e98eb6861d | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85120578282&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/76831946/IEEE_TNNLS.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/111968 | |
dc.identifier.urn | URN:NBN:fi:aalto-2021123111108 | |
dc.language.iso | en | en |
dc.publisher | IEEE | |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/101016775/EU//INTERVENE | |
dc.relation.ispartofseries | IEEE Transactions on Neural Networks and Learning Systems | en |
dc.relation.ispartofseries | Volume 36, issue 3, pp. 4220-4232 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Adaptation models | en_US |
dc.subject.keyword | Cameras | en_US |
dc.subject.keyword | Data models | en_US |
dc.subject.keyword | Feature fusion | en_US |
dc.subject.keyword | Image reconstruction | |
dc.subject.keyword | Lighting | |
dc.subject.keyword | Measurement | |
dc.subject.keyword | Scalability | |
dc.subject.keyword | generate adversarial nets | |
dc.subject.keyword | person reidentification (Re-ID) | |
dc.subject.keyword | unsupervised learning. | en_US |
dc.title | Pixel and Feature Transfer Fusion for Unsupervised Cross-Dataset Person Reidentification | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | acceptedVersion |