Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro- and nano-beam models

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNiiranen, Jarkkoen_US
dc.contributor.authorBalobanov, Viacheslaven_US
dc.contributor.authorKiendl, Josefen_US
dc.contributor.authorHosseini, Seyyeden_US
dc.contributor.departmentDepartment of Civil Engineeringen
dc.contributor.groupauthorMineral Based Materials and Mechanicsen
dc.contributor.organizationNorwegian University of Science and Technologyen_US
dc.contributor.organizationRamboll Finland Oyen_US
dc.date.accessioned2019-01-30T15:10:49Z
dc.date.available2019-01-30T15:10:49Z
dc.date.issued2019-01en_US
dc.description.abstractAs a first step, variational formulations and governing equations with boundary conditions are derived for a pair of Euler–Bernoulli beam bending models following a simplified version of Mindlin’s strain gradient elasticity theory of form II. For both models, this leads to sixth-order boundary value problems with new types of boundary conditions that are given additional attributes singly and doubly, referring to a physically relevant distinguishing feature between free and prescribed curvature, respectively. Second, the variational formulations are analyzed with rigorous mathematical tools: the existence and uniqueness of weak solutions are established by proving continuity and ellipticity of the associated symmetric bilinear forms. This guarantees optimal convergence for conforming Galerkin discretization methods. Third, the variational analysis is extended to cover two other generalized beam models: another modification of the strain gradient elasticity theory and a modified version of the couple stress theory. A model comparison reveals essential differences and similarities in the physicality of these four closely related beam models: they demonstrate essentially two different kinds of parameter-dependent stiffening behavior, where one of these kinds (possessed by three models out of four) provides results in a very good agreement with the size effects of experimental tests. Finally, numerical results for isogeometric Galerkin discretizations with B-splines confirm the theoretical stability and convergence results. Influences of the gradient and thickness parameters connected to size effects, boundary layers and dispersion relations are studied thoroughly with a series of benchmark problems for statics and free vibrations. The size-dependency of the effective Young’s modulus is demonstrated for an auxetic cellular metamaterial ruled by bending-dominated deformation of cell struts.en
dc.description.versionPeer revieweden
dc.format.extent24
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNiiranen, J, Balobanov, V, Kiendl, J & Hosseini, S 2019, 'Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro- and nano-beam models', Mathematics and Mechanics of Solids, vol. 24, no. 1, pp. 312-335. https://doi.org/10.1177/1081286517739669en
dc.identifier.doi10.1177/1081286517739669en_US
dc.identifier.issn1081-2865
dc.identifier.issn1741-3028
dc.identifier.otherPURE UUID: bf7df7f1-5622-470c-a977-03a918187fd0en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/bf7df7f1-5622-470c-a977-03a918187fd0en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85039777192&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/30231141/ENG_Niiranen_et_al_Variational_formulations_model_comparisons_Mathematics_and_mechanics_of_solids.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/36296
dc.identifier.urnURN:NBN:fi:aalto-201901301466
dc.language.isoenen
dc.publisherSage Publishing
dc.relation.ispartofseriesMathematics and Mechanics of Solidsen
dc.relation.ispartofseriesVolume 24, issue 1, pp. 312-335en
dc.rightsopenAccessen
dc.subject.keywordStrain gradient elasticityen_US
dc.subject.keywordcouple stress theoryen_US
dc.subject.keywordsize effectsen_US
dc.subject.keywordEuler-Bernoulli beamsen_US
dc.subject.keywordGalerkin formulationsen_US
dc.subject.keywordconvergence analysisen_US
dc.subject.keywordauxeticsen_US
dc.subject.keywordEuler–Bernoulli beamsen_US
dc.titleVariational formulations, model comparisons and numerical methods for Euler–Bernoulli micro- and nano-beam modelsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files