Clique-Based Separators for Geometric Intersection Graphs
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | de Berg, Mark | en_US |
dc.contributor.author | Kisfaludi-Bak, Sándor | en_US |
dc.contributor.author | Monemizadeh, Morteza | en_US |
dc.contributor.author | Theocharous, Leonidas | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Kisfaludi-Bak Sándor | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Algorithms and Theoretical Computer Science (TCS) | en |
dc.contributor.organization | Eindhoven University of Technology | en_US |
dc.date.accessioned | 2023-08-11T07:21:16Z | |
dc.date.available | 2023-08-11T07:21:16Z | |
dc.date.issued | 2023-06 | en_US |
dc.description | Funding Information: The work in this paper is supported by the Dutch Research Council (NWO) through Gravitation-grant NETWORKS-024.002.003. Publisher Copyright: © 2022, The Author(s). | |
dc.description.abstract | Let F be a set of n objects in the plane and let G×(F) be its intersection graph. A balanced clique-based separator of G×(F) is a set S consisting of cliques whose removal partitions G×(F) into components of size at most δn, for some fixed constant δ< 1. The weight of a clique-based separator is defined as ∑ C∈Slog (| C| + 1). Recently De Berg et al. (SIAM J. Comput. 49: 1291-1331. 2020) proved that if S consists of convex fat objects, then G×(F) admits a balanced clique-based separator of weight O(n). We extend this result in several directions, obtaining the following results. (i) Map graphs admit a balanced clique-based separator of weight O(n), which is tight in the worst case. (ii) Intersection graphs of pseudo-disks admit a balanced clique-based separator of weight O(n2 / 3log n). If the pseudo-disks are polygonal and of total complexity O(n) then the weight of the separator improves to O(nlogn). (iii) Intersection graphs of geodesic disks inside a simple polygon admit a balanced clique-based separator of weight O(n2 / 3log n). (iv) Visibility-restricted unit-disk graphs in a polygonal domain with r reflex vertices admit a balanced clique-based separator of weight O(n+rlog(n/r)), which is tight in the worst case. These results immediately imply sub-exponential algorithms for Maximum Independent Set (and, hence, Vertex Cover), for Feedback Vertex Set, and for q-Coloring for constant q in these graph classes. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 27 | |
dc.format.extent | 1652–1678 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | de Berg, M, Kisfaludi-Bak, S, Monemizadeh, M & Theocharous, L 2023, ' Clique-Based Separators for Geometric Intersection Graphs ', Algorithmica, vol. 85, no. 6, pp. 1652–1678 . https://doi.org/10.1007/s00453-022-01041-8 | en |
dc.identifier.doi | 10.1007/s00453-022-01041-8 | en_US |
dc.identifier.issn | 0178-4617 | |
dc.identifier.issn | 1432-0541 | |
dc.identifier.other | PURE UUID: 31347662-e3a1-437f-8bb1-6093990912e2 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/31347662-e3a1-437f-8bb1-6093990912e2 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85139908380&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/117587767/SCI_de_Berg_etal_Algorithmica_2023.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/122340 | |
dc.identifier.urn | URN:NBN:fi:aalto-202308114689 | |
dc.language.iso | en | en |
dc.publisher | Springer | |
dc.relation.ispartofseries | Algorithmica | en |
dc.relation.ispartofseries | Volume 85, issue 6 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Computational geometry | en_US |
dc.subject.keyword | Intersection graphs | en_US |
dc.subject.keyword | Separator theorems | en_US |
dc.title | Clique-Based Separators for Geometric Intersection Graphs | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |