Data-driven mechanistic analysis method to reveal dynamically evolving regulatory networks

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2016-06-15
Major/Subject
Mcode
Degree programme
Language
en
Pages
288-296
Series
Bioinformatics, Volume 32, issue 12
Abstract
Motivation: Mechanistic models based on ordinary differential equations provide powerful and accurate means to describe the dynamics of molecular machinery which orchestrates gene regulation. When combined with appropriate statistical techniques, mechanistic models can be calibrated using experimental data and, in many cases, also the model structure can be inferred from time-course measurements. However, existing mechanistic models are limited in the sense that they rely on the assumption of static network structure and cannot be applied when transient phenomena affect, or rewire, the network structure. In the context of gene regulatory network inference, network rewiring results from the net impact of possible unobserved transient phenomena such as changes in signaling pathway activities or epigenome, which are generally difficult, but important, to account for. Results: We introduce a novel method that can be used to infer dynamically evolving regulatory networks from time-course data. Our method is based on the notion that all mechanistic ordinary differential equation models can be coupled with a latent process that approximates the network structure rewiring process. We illustrate the performance of the method using simulated data and, further, we apply the method to study the regulatory interactions during T helper 17 (Th17) cell differentiation using time-course RNA sequencing data. The computational experiments with the real data show that our method is capable of capturing the experimentally verified rewiring effects of the core Th17 regulatory network. We predict Th17 lineage specific subnetworks that are activated sequentially and control the differentiation process in an overlapping manner.
Description
Keywords
Other note
Citation
Intosalmi , J , Nousiainen , K , Ahlfors , H & Lähdesmäki , H 2016 , ' Data-driven mechanistic analysis method to reveal dynamically evolving regulatory networks ' , Bioinformatics , vol. 32 , no. 12 , pp. 288-296 . https://doi.org/10.1093/bioinformatics/btw274