Dynamic Model of a Virtual Air Gap Reactor

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSevsek, Daviden_US
dc.contributor.authorHinkkanen, Markoen_US
dc.contributor.authorKukkola, Jarnoen_US
dc.contributor.authorLehtonen, Mattien_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorPower Systems and High Voltage Engineeringen
dc.contributor.groupauthorElectric Drivesen
dc.date.accessioned2023-09-06T06:02:28Z
dc.date.available2023-09-06T06:02:28Z
dc.date.issued2023-08-01en_US
dc.descriptionPublisher Copyright: Author
dc.description.abstractVariable reactors have been a vital component of power networks for decades, where they have been used as fault-current limiting devices or for reactive power compensation. Traditionally, modifying the inductance of predominantly mechanically operated variable reactors requires seconds to minutes. In contrast, virtual air gap (VAG) reactors can change the inductance within milliseconds, potentially improving power system stability. Existing dynamic models of VAG reactors cannot capture the entire system dynamics, limiting their applicability for simulations in the time-domain. This research presents two dynamic VAG reactor models, one with and one without core losses. The models capture all significant system dynamics using electromagnetic principles and VAG reactor flux linkage behavior. The proposed models were experimentally validated using a small VAG reactor. Over a broad operating range, both models accurately reproduce the dynamic behavior, transient response, and dominant harmonics of the small VAG reactor. Consequently, the models may be used for a variety of applications, such as time-domain simulations, harmonic analysis, and the development of suitable controllers for VAG reactors. In addition, engineers may use the core loss omitting model as a VAG reactor design tool, as the actual reactor is not required for modeling.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.extent2521-2530
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSevsek, D, Hinkkanen, M, Kukkola, J & Lehtonen, M 2023, ' Dynamic Model of a Virtual Air Gap Reactor ', IEEE Transactions on Power Delivery, vol. 38, no. 4, pp. 2521-2530 . https://doi.org/10.1109/TPWRD.2023.3245123en
dc.identifier.doi10.1109/TPWRD.2023.3245123en_US
dc.identifier.issn0885-8977
dc.identifier.issn1937-4208
dc.identifier.otherPURE UUID: 33e4995d-6a47-4c4b-aa82-f8dc8d37f4c2en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/33e4995d-6a47-4c4b-aa82-f8dc8d37f4c2en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85149390665&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/119856887/Dynamic_Model_of_a_Virtual_Air_Gap_Reactor.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/123325
dc.identifier.urnURN:NBN:fi:aalto-202309065690
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Power Deliveryen
dc.relation.ispartofseriesVolume 38, issue 4en
dc.rightsopenAccessen
dc.subject.keywordDynamic modelen_US
dc.subject.keywordFinite element analysisen_US
dc.subject.keywordfinite element method (FEM)en_US
dc.subject.keywordInductorsen_US
dc.subject.keywordMagnetic coresen_US
dc.subject.keywordMagnetizationen_US
dc.subject.keywordPower system dynamicsen_US
dc.subject.keywordvariable reactoren_US
dc.subject.keywordvirtual air gap (VAG)en_US
dc.subject.keywordVoltage measurementen_US
dc.subject.keywordWindingsen_US
dc.titleDynamic Model of a Virtual Air Gap Reactoren
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files