Adapting User Interfaces with Model-based Reinforcement Learning

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTodi, Kashyapen_US
dc.contributor.authorLeiva, Luisen_US
dc.contributor.authorBailly, Gillesen_US
dc.contributor.authorOulasvirta, Anttien_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorUser Interfacesen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationSorbonne Universitéen_US
dc.contributor.organizationUniversity of Luxembourgen_US
dc.date.accessioned2021-09-22T06:31:17Z
dc.date.available2021-09-22T06:31:17Z
dc.date.issued2021-05-06en_US
dc.description.abstractAdapting an interface requires taking into account both the positive and negative effects that changes may have on the user. A carelessly picked adaptation may impose high costs to the user – for example, due to surprise or relearning effort – or "trap" the process to a suboptimal design immaturely. However, effects on users are hard to predict as they depend on factors that are latent and evolve over the course of interaction. We propose a novel approach for adaptive user interfaces that yields a conservative adaptation policy: It finds beneficial changes when there are such and avoids changes when there are none. Our model-based reinforcement learning method plans sequences of adaptations and consults predictive HCI models to estimate their effects. We present empirical and simulation results from the case of adaptive menus, showing that the method outperforms both a non-adaptive and a frequency-based policy.en
dc.description.versionPeer revieweden
dc.format.extent13
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTodi, K, Leiva, L, Bailly, G & Oulasvirta, A 2021, Adapting User Interfaces with Model-based Reinforcement Learning . in CHI '21: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems : Making Waves, Combining Strengths ., 573, ACM, ACM SIGCHI Annual Conference on Human Factors in Computing Systems, Yokohama, Japan, 08/05/2021 . https://doi.org/10.1145/3411764.3445497en
dc.identifier.doi10.1145/3411764.3445497en_US
dc.identifier.isbn978-1-4503-8096-6
dc.identifier.otherPURE UUID: 5c9cc5ef-e241-4960-a7ae-b3b308aa879cen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/5c9cc5ef-e241-4960-a7ae-b3b308aa879cen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85104074543&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/55480130/Todi_Adapting_user_interfaces_with_model_basedCHI2021Adaptive.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/110093
dc.identifier.urnURN:NBN:fi:aalto-202109229316
dc.language.isoenen
dc.relation.ispartofseriesCHI '21: Proceedings of the SIGCHI Conference on Human Factors in Computing Systemsen
dc.rightsopenAccessen
dc.subject.keywordAdaptive User Interfacesen_US
dc.subject.keywordReinforcement Learningen_US
dc.subject.keywordPredictive Modelsen_US
dc.subject.keywordMonte Carlo Tree Searchen_US
dc.titleAdapting User Interfaces with Model-based Reinforcement Learningen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion
Files