Structuring of Nanocelluloses in 3-D Functional Materials

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorRojas, Orlando, Prof., Aalto University, Finland
dc.contributor.advisorHuan, Siqi, Dr., Aalto University, Finland
dc.contributor.advisorTardy, Blaise L., Dr., Aalto University, Finland
dc.contributor.authorAjdary, Rubina
dc.contributor.departmentBiotuotteiden ja biotekniikan laitosfi
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.labBiobased Colloids and Materialsen
dc.contributor.schoolKemian tekniikan korkeakoulufi
dc.contributor.schoolSchool of Chemical Engineeringen
dc.contributor.supervisorRojas, Orlando, Prof., Aalto University, Department of Bioproducts and Biosystems, Finland
dc.date.accessioned2022-01-11T10:00:11Z
dc.date.available2022-01-11T10:00:11Z
dc.date.defence2022-01-27
dc.date.issued2022
dc.descriptionDefence is held on 27.1.2022 18:00 – 21:00 https://aalto.zoom.us/j/62396613471
dc.description.abstractThis thesis investigates fundamental and practical aspects of the materials and methods used to assemble 3D structures from bio-based materials using mono- to multi-component systems through bottom-up and other processes. Fused Deposition Molding (FDM) and Direct Ink Writing (DIW) were used to fabricate structures with controlled geometries and properties. Nanocellulose from both microorganisms and wood featured promising biocompatibility and was investigated as primary subjects for the studies. We discuss the rheological requirements to process hydrogels by direct ink writing and address the effect of compositions and water interactions in the swelling of 3D-printed materials. The essential factors associated with cellular activities in biomedical applications were considered. The shear-thinning behavior of nanocellulose hydrogels facilitated the printability of the inks into defined shapes, which were investigated by using a wide range of needle sizes, lengths, and profiles. We discuss the effect of printing parameters and post-processing techniques on structural fidelity and properties. The nanocellulose-based mono and multi-component functional structures presented the advantages of inexpensive and fast production, dimensional retention and stability, ease of drying and rewetting process, thus facilitating packaging, transportation, and material sterilization while displaying excellent compatibility with cells. Material characterizations (for example, morphology, microstructure, mechanical performance, shrinkage, swelling, and degradation) were studied to define suitable applications for the developed structures. Our findings in this thesis are expected to facilitate future work to address standing challenges in constructing 3-dimensional bio-based materials.en
dc.format.extent66 + app. 116
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-64-0660-2 (electronic)
dc.identifier.isbn978-952-64-0659-6 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/112236
dc.identifier.urnURN:ISBN:978-952-64-0660-2
dc.language.isoenen
dc.opnCarmen S.R., Prof., University of Aveiro, Portugal
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Ajdary, Rubina; Abidnejad, Roozbeh; Lehtonen, Janika; Kuula, Jani; Raussi-Lehto, Eija; Kankuri, Esko; Tardy, Blaise; Rojas, Orlando J. Bacterial aerotaxis as a route toward cellulose biomaterials and auxetic supporting im- plants. Submitted to the Carbohydrate Polymers (2021)
dc.relation.haspart[Publication 2]: Ajdary, Rubina; Huan, Siqi; Zanjanizadeh Ezazi, Nazanin; Xiang, Wenchao; Grande, Rafael; Santos, Hélder A; Rojas, Orlando J. (2019) Acetylated nanocellulose for single-component bioinks and cell proliferation on 3D- printed scaffolds. Biomacromolecules, 20 (7), 2770–2778. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-201907304506. DOI: 10.1021/acs.biomac.9b00527
dc.relation.haspart[Publication 3]: Baniasadi, Hossein; Ajdary, Rubina; Trifol, Jon; Rojas, Orlando J; Seppälä, Jukka. (2021) Direct ink writing of aloe vera/cellulose nanofibrils biohydrogels. Carbohydrate Polymers, 266, 118114. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202105056469. DOI: 10.1016/j.carbpol.2021.118114
dc.relation.haspart[Publication 4]: Ajdary, Rubina; Reyes, Guillermo; Kuula, Jani; Raussi-Lehto, Eija; Mikkola, Tomi S.; Kankuri, Esko; Rojas, Orlando J. Direct ink writing of biocompatible nanocellulose and chitosan hydrogels for implant mesh matrices. Accepted in the ACS Polymers Au (2021). Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202201101070. DOI: 10.1021/acspolymersau.1c00045
dc.relation.haspart[Publication 5]: Ajdary, Rubina; Zanjanizadeh Ezazi, Nazanin; Rebelo Correia, Alexandra Maria; Kemell, Marianna; Huan, Siqi; Ruskoaho, Heikki; Hirvonen, Jouni; Santos, Hélder A; Rojas, Orlando J. (2020) Multifunctional 3D-printed patches for long-term drug release therapies after myocardial infarction. Advanced Functional Materials, 30, 2003440. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202008124674. DOI: 10.1002/adfm.202003440
dc.relation.ispartofseriesAalto University publication series DOCTORAL THESESen
dc.relation.ispartofseries4/2022
dc.revSiqueira, Gilberto, Dr., Empa, Switzerland
dc.revChinga Carrasco, Gary, Dr., RISE PFI, Norway
dc.subject.keywordnanocelluloseen
dc.subject.keywordbiopolymeren
dc.subject.keywordthree-dimensionalen
dc.subject.keywordadditive manufacturingen
dc.subject.otherBiotechnologyen
dc.subject.otherChemistryen
dc.titleStructuring of Nanocelluloses in 3-D Functional Materialsen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2022-01-28_1035
local.aalto.archiveyes
local.aalto.formfolder2022_01_11_klo_10_18
local.aalto.infraBioeconomy Infrastructure
local.aalto.infraOtaNano
local.aalto.infraOtaNano - Nanomicroscopy Center

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
isbn9789526406602.pdf
Size:
15.29 MB
Format:
Adobe Portable Document Format