Tree identification from terrestrial laser scanning data
Loading...
Journal Title
Journal ISSN
Volume Title
Insinööritieteiden korkeakoulu |
Master's thesis
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Author
Date
2019-12-16
Department
Major/Subject
Mcode
Degree programme
Master's Programme in Geoinformatics (GIS)
Language
en
Pages
57 + 5
Series
Abstract
The requirements for more accurate and up-to-date spatial data increases constantly due to changes occurring in the environment. In addition, there is a technical and economical need to map trees, tree ages and sizes, as well in wide forest areas as park areas in cities by modern scanning techniques. The aim of this thesis was to investigate different positioning methods for terrestrial laser scanned trees. The second aim was to examine different techniques to identify the species of the positioned trees. Laser scans from two separate relatively small woodlands were acquired for the thesis. These scans were utilised for tree locating and species identification. Tree positioning was based on the cylinder fitting method performed for tree stems provided by the scans. The results achieved by the positioning were analyzed based on the comparison to the manually measured reference values. To identify the tree species, the tree intensities and structure parameters extracted from the point clouds were used. According to the study results, the classification of some tree species was relatively well succeeded. However, the identification of some other species did not succeed as expected. The best classification correctness of 80 percent was achieved using the combination of tree intensities and the structure parameters, as well as by the structure parameters only. Classification using the intensities only provided considerably more unreliable results. Instead of that, one tree species (spruce) identification succeeded perfectly in each case. However, tree positioning succeeded obviously well, so the tree locations deviated slightly from the reference values. This examination indicated that a reliable evaluation of the tree classification results did not fully succeed with the relatively small tree sample size used in this thesis. To obtain more reliable estimate of success rate for the results provided by terrestrial laser scanning data, a larger sample size may be required. Furthermore, the laser scans for this work were performed in autumn when there were no leaves in the trees. This, of course, affected the intensity-based tree classification. However, modern tree positioning and classification methods appear quite promising. The future use of these techniques require further development and examination work.Yhä tarkemman ja ajantasaisen paikkatiedon tarve kasvaa jatkuvasti ympäristössä tapahtuvien nopeiden muutosten myötä. Tämä näkyy myös teknistaloudellisena tarpeena kartoittaa puulajeja, niiden ikää ja kokoa mm. erilaisilla nykyajan keilausmenetelmillä, niin laajoilla metsäalueilla kuin kaupunkien puistoalueilla. Tämän työn tavoitteena oli tutkia maastolaserkeilattujen puiden erilaisia paikannusmenetelmiä. Toisena tavoitteena oli tarkastella paikannettujen puiden lajitunnistusmenetelmiä. Työn toteuttamiseksi suoritettiin laserkeilauksia kahdella erillisellä pienehköllä metsäalueella. Näitä keilausaineistoja käytettiin puiden paikantamiseen ja lajitunnistukseen. Paikannus perustui keilausten tuloksena saaduille puun rungoille tehtyyn sylinterisovitusmenetelmään. Laskennalla saatuja tuloksia analysoitiin vertaamalla niitä referenssiarvoihin, jotka saatiin pistepilvistä manuaalisesti mittaamalla. Lajitunnistuksessa käytettiin puista saatujen pistepilvien intensiteettejä ja rakenneparametreja. Suoritetun tarkastelun perusteella joidenkin puulajien tunnistaminen onnistui melko hyvin. Kaikkien puiden tunnistaminen ei kuitenkaan onnistunut odotetulla tavalla. Käyttäen pistepilvien intensiteettien ja pistepilvistä saatujen puiden rakenneparametrien yhdistelmää, sekä pelkkiä rakenneparametreja, tulkittiin parhaimmillaankin noin 80 prosenttia tuloksista oikein. Pelkkiä intensiteettejä käyttäen saatiin huomattavasti epäluotettavampi tulos. Sen sijaan yhden puulajin (kuusen) tunnistaminen onnistui kaikissa tapauksissa täydellisesti. Toisaalta, suoritetussa tarkastelussa puiden paikantaminen onnistui kokonaisuudessaan hyvin, sillä laskennalla puille saadut sijainnit poikkesivat referenssiarvoista kauttaaltaan varsin vähän. Tarkastelu osoitti, että maalaserkeilattujen puiden tunnistaminen tässä työssä käytetyllä suhteellisen pienellä otoskoolla ei täysin onnistunut. Tarkempi arvio maalaserkeilausaineistosta saatujen tulosten onnistumisprosentista olisi edellyttänyt suurempaa otoskokoa. Lisäksi puiden laserkeilaukset tehtiin syksyllä, jolloin puissa ei ollut lehtiä. Tämä tietenkin vaikutti puiden tunnistamiseen intensiteettien avulla. Nykyiset puiden tunnistusmenetelmät vaikuttavat kuitenkin kokonaisuudessaan varsin lupaavilta. Menetelmien hyödyntäminen edellyttää yhä tutkimus- ja kehitystyötä.Description
Supervisor
Vaaja, MattiThesis advisor
Rönnholm, PetriKeywords
terrestrial laser scanning, tree positioning, tree species identification, forest mapping