ZrO2 Acting as a Redox Catalyst

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKauppi, E. I.
dc.contributor.authorHonkala, K.
dc.contributor.authorKrause, A.O.I.
dc.contributor.authorKanervo, J. M.
dc.contributor.authorLefferts, L.
dc.contributor.departmentDepartment of Biotechnology and Chemical Technologyen
dc.contributor.departmentDepartment of Chemical and Metallurgical Engineeringen
dc.contributor.departmentSchool services, CHEMen
dc.contributor.departmentSchool common, CHEMen
dc.contributor.organizationUniversity of Jyväskylä
dc.date.accessioned2017-05-11T07:14:25Z
dc.date.available2017-05-11T07:14:25Z
dc.date.issued2016-05-01
dc.description.abstractSurface defects are discussed and reviewed with regards to the use of ZrO2 in applications involving interactions with CO, H2, CH4, CO2, water and hydrocarbons. Studies of catalytic partial oxidation of methane reveal that part of the surface lattice oxygen in terraces can be removed by methane at high temperatures (e.g. 900 °C). The reaction proceeds via a surface confined redox mechanism. The studies presented here also highlight that defects play a decisive role in the water–gas-shift reaction, since the reaction is likely carried out via OH groups present at defect sites, which are regenerated by dissociating water. Hydroxyl chemistry on ZrO2 is briefly reviewed related to the studies presented. Finally, new density functional theory calculations were conducted to find out how H2S interacts with ZrO2 surface (defect sites), in order to explain enhancement of activity in naphthalene and ammonia oxidation by H2S. Molecularly adsorbed H2S as well as terminal SH species (produced by dissociation of H2S) cannot be responsible for enhanced reactivity of surface oxygen. In contrast, multi-coordinated SH induced a relatively weak increase of the reactivity of neighboring OH groups according to thermodynamic calculations. Probably, the right active site responsible for the observed H2S-induced enhancement of oxidation activity on ZrO2 is yet to be discovered.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdf
dc.identifier.citationKauppi, E I, Honkala, K, Krause, A O I, Kanervo, J M & Lefferts, L 2016, 'ZrO 2 Acting as a Redox Catalyst', Topics in Catalysis, vol. 59, no. 8-9, pp. 823-832. https://doi.org/10.1007/s11244-016-0556-4en
dc.identifier.doi10.1007/s11244-016-0556-4
dc.identifier.issn1022-5528
dc.identifier.issn1572-9028
dc.identifier.otherPURE UUID: 4efc9591-45ea-4118-af06-b70d47ad80a0
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/4efc9591-45ea-4118-af06-b70d47ad80a0
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=84973879685&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/11454660/Kauppi_et_al_2016_Acting_Redox_Catalyst.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/25501
dc.identifier.urnURN:NBN:fi:aalto-201705113885
dc.language.isoenen
dc.publisherSpringer
dc.relation.ispartofseriesTopics in Catalysisen
dc.relation.ispartofseriesVolume 59, issue 8-9, pp. 823-832en
dc.rightsopenAccessen
dc.subject.keywordCPOM
dc.subject.keywordHS
dc.subject.keywordHydroxyl groups
dc.subject.keywordRedox
dc.subject.keywordTar oxidation
dc.subject.keywordWGS
dc.subject.keywordZrO
dc.titleZrO2 Acting as a Redox Catalysten
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files