Low-Rank Room Impulse Response Estimation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJälmby, Martin
dc.contributor.authorElvander, Filip
dc.contributor.authorWaterschoot, Toon Van
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorStructured and Stochastic Modelingen
dc.contributor.organizationKU Leuven
dc.date.accessioned2023-03-07T13:29:09Z
dc.date.available2023-03-07T13:29:09Z
dc.date.issued2023
dc.descriptionPublisher Copyright: © 2014 IEEE. | openaire: EC/H2020/773268/EU//SONORA
dc.description.abstractIn this paper we consider low-rank estimation of room impulse responses (RIRs). Inspired by a physics-driven room-acoustical model, we propose an estimator of RIRs that promotes a low-rank structure for a matricization, or reshaping, of the estimated RIR. This low-rank prior acts as a regularizer for the inverse problem of estimating an RIR from input-output observations, preventing overfitting and improving estimation accuracy. As directly enforcing a low rank of the estimate results is an NP-hard problem, we consider two different relaxations, one using the nuclear norm, and one using the recently introduced concept of quadratic envelopes. Both relaxations allow for implementing the proposed estimator using a first-order algorithm with convergence guarantees. When evaluated on both synthetic and recorded RIRs, it is shown that under noisy output conditions, or when the spectral excitation of the input signal is poor, the proposed estimator outperforms comparable existing methods. The performance of the two low-rank relaxations methods is similar, but the quadratic envelope has the benefit of superior robustness to the choice of regularization hyperparameter in the case when the signal-to-noise ratio is unknown. The performance of the proposed method is compared to that of ordinary least squares, Tikhonov least squares, as well as the Cramér-Rao lower bound (CRLB).en
dc.description.versionPeer revieweden
dc.format.extent13
dc.format.mimetypeapplication/pdf
dc.identifier.citationJälmby, M, Elvander, F & Waterschoot, T V 2023, ' Low-Rank Room Impulse Response Estimation ', IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 31, pp. 957-969 . https://doi.org/10.1109/TASLP.2023.3240650en
dc.identifier.doi10.1109/TASLP.2023.3240650
dc.identifier.issn2329-9290
dc.identifier.otherPURE UUID: 1eda3f84-9e56-42da-9311-b62dd8edc26d
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/1eda3f84-9e56-42da-9311-b62dd8edc26d
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85148444575&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/102373969/Low_Rank_Room_Impulse_Response_Estimation.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/119984
dc.identifier.urnURN:NBN:fi:aalto-202303072312
dc.language.isoenen
dc.publisherIEEE
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/773268/EU//SONORA
dc.relation.ispartofseriesIEEE/ACM Transactions on Audio Speech and Language Processingen
dc.relation.ispartofseriesVolume 31, pp. 957-969en
dc.rightsopenAccessen
dc.subject.keywordLow-rank modeling
dc.subject.keywordquadratic envelopes
dc.subject.keywordroom impulse responses
dc.titleLow-Rank Room Impulse Response Estimationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files