Exploring Contextual Representation and Multi-modality for End-to-end Autonomous Driving

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

13

Series

Engineering Applications of Artificial Intelligence, Volume 135

Abstract

Learning contextual and spatial environmental representations enhances autonomous vehicle’s hazard anticipation and decision-making in complex scenarios. Recent perception systems enhance spatial understanding with sensor fusion but often lack global environmental context. Humans, when driving, naturally employ neural maps that integrate various factors such as historical data, situational subtleties, and behavioral predictions of other road users to form a rich contextual understanding of their surroundings. This neural map-based comprehension is integral to making informed decisions on the road. In contrast, even with their significant advancements, autonomous systems have yet to fully harness this depth of human-like contextual understanding. Motivated by this, our work draws inspiration from human driving patterns and seeks to formalize the sensor fusion approach within an end-to-end autonomous driving framework. We introduce a framework that integrates three cameras (left, right, and center) to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation. The sensor data is fused and encoded using a self-attention mechanism, leading to an auto-regressive waypoint prediction module. We treat feature representation as a sequential problem, employing a vision transformer to distill the contextual interplay between sensor modalities. The efficacy of the proposed method is experimentally evaluated in both open and closed-loop settings. Our method achieves displacement error by 0.67 m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset. In closed-loop evaluations on CARLA’s Town05 Long and Longest6 benchmarks, the proposed method enhances driving performance, route completion, and reduces infractions.

Description

Other note

Citation

Azam, S, Munir, F, Kyrki, V, Kucner, T P, Jeon, M & Pedrycz, W 2024, 'Exploring Contextual Representation and Multi-modality for End-to-end Autonomous Driving', Engineering Applications of Artificial Intelligence, vol. 135, 108767. https://doi.org/10.1016/j.engappai.2024.108767