Computing Smallest Convex Intersecting Polygons
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Antoniadis, Antonios | en_US |
dc.contributor.author | De Berg, Mark | en_US |
dc.contributor.author | Kisfaludi-Bak, Sándor | en_US |
dc.contributor.author | Skarlatos, Antonis | en_US |
dc.contributor.department | University of Twente | en_US |
dc.contributor.department | Eindhoven University of Technology | en_US |
dc.contributor.department | Professorship Kisfaludi-Bak Sándor | en_US |
dc.contributor.department | University of Salzburg | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.editor | Chechik, Shiri | en_US |
dc.contributor.editor | Navarro, Gonzalo | en_US |
dc.contributor.editor | Rotenberg, Eva | en_US |
dc.contributor.editor | Herman, Grzegorz | en_US |
dc.date.accessioned | 2022-10-19T06:43:51Z | |
dc.date.available | 2022-10-19T06:43:51Z | |
dc.date.issued | 2022-09-01 | en_US |
dc.description | Funding Information: Funding Mark de Berg is supported by the Dutch Research Council (NWO) through Gravitation-grant NETWORKS-024.002.003. Antonis Skarlatos: Part of the work was done during an internship at the Max Planck Institute for Informatics in Saarbrücken, Germany. Publisher Copyright: © 2022 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. All rights reserved. | |
dc.description.abstract | A polygon C is an intersecting polygon for a set O of objects in R2 if C intersects each object in O, where the polygon includes its interior. We study the problem of computing the minimum-perimeter intersecting polygon and the minimum-area convex intersecting polygon for a given set O of objects. We present an FPTAS for both problems for the case where O is a set of possibly intersecting convex polygons in the plane of total complexity n. Furthermore, we present an exact polynomial-time algorithm for the minimum-perimeter intersecting polygon for the case where O is a set of n possibly intersecting segments in the plane. So far, polynomial-time exact algorithms were only known for the minimum perimeter intersecting polygon of lines or of disjoint segments. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 13 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Antoniadis , A , De Berg , M , Kisfaludi-Bak , S & Skarlatos , A 2022 , Computing Smallest Convex Intersecting Polygons . in S Chechik , G Navarro , E Rotenberg & G Herman (eds) , 30th Annual European Symposium on Algorithms, ESA 2022 . , 9 , Leibniz International Proceedings in Informatics, LIPIcs , vol. 244 , Schloss Dagstuhl - Leibniz-Zentrum für Informatik , European Symposium on Algorithms , Berlin and Potsdam , Germany , 05/09/2022 . https://doi.org/10.4230/LIPIcs.ESA.2022.9 | en |
dc.identifier.doi | 10.4230/LIPIcs.ESA.2022.9 | en_US |
dc.identifier.isbn | 9783959772471 | |
dc.identifier.issn | 1868-8969 | |
dc.identifier.other | PURE UUID: 5fa75960-8d03-4400-b0d1-9c4d41787f08 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/5fa75960-8d03-4400-b0d1-9c4d41787f08 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85137550638&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/88521131/SCI_Antoniadis_et_alii_Computing_Smallest_Convex_Intersecting_Polygons.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/117219 | |
dc.identifier.urn | URN:NBN:fi:aalto-202210196007 | |
dc.language.iso | en | en |
dc.relation.ispartof | European Symposium on Algorithms | en |
dc.relation.ispartofseries | 30th Annual European Symposium on Algorithms, ESA 2022 | en |
dc.relation.ispartofseries | Leibniz International Proceedings in Informatics, LIPIcs | en |
dc.relation.ispartofseries | Volume 244 | en |
dc.rights | openAccess | en |
dc.subject.keyword | computational geometry | en_US |
dc.subject.keyword | convex hull | en_US |
dc.subject.keyword | imprecise points | en_US |
dc.title | Computing Smallest Convex Intersecting Polygons | en |
dc.type | Conference article in proceedings | fi |
dc.type.version | publishedVersion |