Passivation of black silicon boron emitters with atomic layer deposited aluminum oxide

Loading...
Thumbnail Image

Access rights

© 2013 Wiley-Blackwell. This is the post print version of the following article: Repo, Päivikki & Benick, Jan & Gastrow, Guillaume von & Vähänissi, Ville & Heinz, Friedemann D. & Schön, Jonas & Schubert, Martin C. & Savin, Hele. 2013. Passivation of black silicon boron emitters with atomic layer deposited aluminum oxide. Physica Status Solidi RRL. Volume 7, Issue 11. 950-954. DOI: 10.1002/pssr.201308096, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/pssr.201308096/abstract.

URL

Journal Title

Journal ISSN

Volume Title

School of Electrical Engineering | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2013

Major/Subject

Mcode

Degree programme

Language

en

Pages

950-954

Series

Physica Status Solidi RRL, Volume 7, Issue 11

Abstract

The nanostructured surface – also called black silicon (b-Si) – is a promising texture for solar cells because of its extremely low reflectance combined with low surface recombination obtained with atomic layer deposited (ALD) thin films. However, the challenges in keeping the excellent optical properties and passivation in further processing have not been addressed before. Here we study especially the applicability of the ALD passivation on highly boron doped emitters that is present in crystalline silicon solar cells. The results show that the nanostructured boron emitters can be passivated efficiently using ALD Al2O3 reaching emitter saturation current densities as low as 51 fA/cm2. Furthermore, reflectance values less than 0.5% after processing show that the different process steps are not detrimental for the low reflectance of b-Si.

Description

Keywords

black silicon, surface passivation, boron diffusion, aluminum oxide

Other note

Citation

Repo, Päivikki & Benick, Jan & Gastrow, Guillaume von & Vähänissi, Ville & Heinz, Friedemann D. & Schön, Jonas & Schubert, Martin C. & Savin, Hele. 2013. Passivation of black silicon boron emitters with atomic layer deposited aluminum oxide. Physica Status Solidi RRL. Volume 7, Issue 11. 950-954. DOI: 10.1002/pssr.201308096.