All-parylene flexible wafer-scale graphene thin film transistor
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
6
Series
Applied Surface Science, Volume 551
Abstract
Graphene is an ideal candidate as a component of flexible/wearable electronics due to its two-dimensional nature and low gate bias requirements for high quality devices. However, the proven methods for fabrication of graphene thin film transistors (TFTs) on fixed substrates involve using a sacrificial polymer layer to transfer graphene to a desired surface have led to mixed results for flexible devices. Here, by using the same polymer layer (parylene C) for both graphene transfer and the flexible substrate itself, we produced graphene TFTs on the wafer-scale requiring less than |2 V| gate bias and with high mechanical resilience of 30,000 bending cycles.Description
Other note
Citation
Kim, M, Mackenzie, D M A, Kim, W, Isakov, K & Lipsanen, H 2021, 'All-parylene flexible wafer-scale graphene thin film transistor', Applied Surface Science, vol. 551, 149410. https://doi.org/10.1016/j.apsusc.2021.149410