Stay On-Topic: Generating Context-specific Fake Restaurant Reviews
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Juuti, Mika | en_US |
dc.contributor.author | Sun, Bo | en_US |
dc.contributor.author | Mori, Tatsuya | en_US |
dc.contributor.author | Asokan, N. | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Adj. Prof Asokan N. group | en |
dc.contributor.organization | Waseda University | en_US |
dc.date.accessioned | 2019-01-14T09:19:54Z | |
dc.date.available | 2019-01-14T09:19:54Z | |
dc.date.issued | 2018 | en_US |
dc.description.abstract | Automatically generated fake restaurant reviews are a threat to online review systems. Recent research has shown that users have difficulties in detecting machine-generated fake reviews hiding among real restaurant reviews. The method used in this work (char-LSTM ) has one drawback: it has difficulties staying in context, i.e. when it generates a review for specific target entity, the resulting review may contain phrases that are unrelated to the target, thus increasing its detectability. In this work, we present and evaluate a more sophisticated technique based on neural machine translation (NMT) with which we can generate reviews that stay on-topic. We test multiple variants of our technique using native English speakers on Amazon Mechanical Turk. We demonstrate that reviews generated by the best variant have almost optimal undetectability (class-averaged F-score 47%). We conduct a user study with skeptical users and show that our method evades detection more frequently compared to the state-of-the-art (average evasion 3.2/4 vs 1.5/4) with statistical significance, at level {\alpha} = 1% (Section 4.3). We develop very effective detection tools and reach average F-score of 97% in classifying these. Although fake reviews are very effective in fooling people, effective automatic detection is still feasible. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 20 | |
dc.format.extent | 132-151 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Juuti, M, Sun, B, Mori, T & Asokan, N 2018, Stay On-Topic : Generating Context-specific Fake Restaurant Reviews . in Computer Security - 23rd European Symposium on Research in Computer Security, ESORICS 2018, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11098 LNCS, Springer, pp. 132-151, European Symposium on Research in Computer Security, Barcelona, Spain, 03/09/2018 . https://doi.org/10.1007/978-3-319-99073-6_7 | en |
dc.identifier.doi | 10.1007/978-3-319-99073-6_7 | en_US |
dc.identifier.isbn | 9783319990729 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.other | PURE UUID: 2970e6a4-7c62-4907-a215-9346e76ed4da | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/2970e6a4-7c62-4907-a215-9346e76ed4da | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/31096425/SCI_Juuti_Sun_Stay_On_Topic.esorics_camera.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/35928 | |
dc.identifier.urn | URN:NBN:fi:aalto-201901141111 | |
dc.language.iso | en | en |
dc.publisher | Springer | |
dc.relation.ispartof | European Symposium on Research in Computer Security | en |
dc.relation.ispartofseries | Computer Security - 23rd European Symposium on Research in Computer Security, ESORICS 2018, Proceedings | en |
dc.relation.ispartofseries | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en |
dc.relation.ispartofseries | Volume 11098 LNCS | en |
dc.rights | openAccess | en |
dc.subject.keyword | security | en_US |
dc.subject.keyword | Machine Learning | en_US |
dc.subject.keyword | fraud detection | en_US |
dc.subject.keyword | neural machine translation | en_US |
dc.subject.keyword | social media | en_US |
dc.subject.keyword | natural language | en_US |
dc.title | Stay On-Topic: Generating Context-specific Fake Restaurant Reviews | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | acceptedVersion |