Benchmarking machine learning algorithms for adaptive quantum phase estimation with noisy intermediate-scale quantum sensors
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2021-12
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
EPJ Quantum Technology, Volume 8, issue 1
Abstract
Quantum phase estimation is a paradigmatic problem in quantum sensing and metrology. Here we show that adaptive methods based on classical machine learning algorithms can be used to enhance the precision of quantum phase estimation when noisy non-entangled qubits are used as sensors. We employ the Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms to this task and we identify the optimal feedback policies which minimize the Holevo variance. We benchmark these schemes with respect to scenarios that include Gaussian and Random Telegraph fluctuations as well as reduced Ramsey-fringe visibility due to decoherence. We discuss their robustness against noise in connection with real experimental setups such as Mach–Zehnder interferometry with optical photons and Ramsey interferometry in trapped ions, superconducting qubits and nitrogen-vacancy (NV) centers in diamond.Description
| openaire: EC/H2020/862644/EU//QUARTET
Keywords
Machine learning, Quantum phase estimation, Qubit
Other note
Citation
Costa, N F, Yasser, O, Sultanov, A & Paraoanu, G S 2021, ' Benchmarking machine learning algorithms for adaptive quantum phase estimation with noisy intermediate-scale quantum sensors ', EPJ Quantum Technology, vol. 8, no. 1, 16 . https://doi.org/10.1140/epjqt/s40507-021-00105-y