Local Structure in U(IV) and U(V) Environments

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2020-04-06
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
4576-4587
Series
Inorganic Chemistry, Volume 59, issue 7
Abstract
A comprehensive analysis of X-ray absorption data obtained at the U L3-edge for a systematic series of single-valence (UO2, KUO3, UO3) and mixed-valence uranium compounds (U4O9, U3O7, U3O8) is reported. High-energy resolution fluorescence detection (HERFD) X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) methods were applied to evaluate U(IV) and U(V) environments, and in particular, to investigate the U3O7 local structure. We find that the valence state distribution in mixed-valence uranium compounds cannot be confidently quantified from a principal component analysis of the U L3-edge XANES data. The spectral line broadening, even when applying the HERFD-XANES method, is sensibly higher (&tild;3.9 eV) than the observed chemical shifts (&tild;2.4 eV). Additionally, the white line shape and position are affected not only by the chemical state, but also by crystal field effects, which appear well-resolved in KUO3. The EXAFS of a phase-pure U3O7 sample was assessed based on an average representation of the expanded U60O140 structure. Interatomic U-O distances are found mainly to occur at 2.18 (2), 2.33 (1), and 3.33 (5) Å, and can be seen to correspond to the spatial arrangement of cuboctahedral oxygen clusters. The interatomic distances derived from the EXAFS investigation support a mixed U(IV)-U(V) valence character in U3O7
Description
Keywords
Other note
Citation
Leinders , G , Bes , R , Kvashnina , K O & Verwerft , M 2020 , ' Local Structure in U(IV) and U(V) Environments : The Case of U 3 O 7 ' , Inorganic Chemistry , vol. 59 , no. 7 , pp. 4576-4587 . https://doi.org/10.1021/acs.inorgchem.9b03702