Prediction of asphalt rheological properties for paving and maintenance assistance using explainable machine learning

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZhang, Fan
dc.contributor.authorCannone Falchetto, Augusto
dc.contributor.authorWang, Di
dc.contributor.authorLi, Zhenkun
dc.contributor.authorSun, Yuxuan
dc.contributor.authorLin, Weiwei
dc.contributor.departmentDepartment of Civil Engineeringen
dc.contributor.groupauthorMineral Based Materials and Mechanicsen
dc.contributor.groupauthorPerformance in Building Design and Constructionen
dc.contributor.groupauthorStructures – Structural Engineering, Mechanics and Computationen
dc.date.accessioned2025-04-30T07:32:09Z
dc.date.available2025-04-30T07:32:09Z
dc.date.issued2025-09-15
dc.descriptionPublisher Copyright: © 2025 The Author(s)
dc.description.abstractConventional frequency-temperature sweep tests for evaluating asphalt rheological properties are time-consuming and resource-intensive. The characterization efficiency can be significantly improved by establishing a robust predictive model that links rheological properties to chemical composition. To this end, this study investigates the correlation between asphalt's chemical and rheological properties and develops precise predictive models using machine learning techniques. The input features include eleven key functional groups measured by Fourier Transform Infrared Spectroscopy (FTIR), while the output variables are the complex modulus (|G*|) and phase angle (δ) from Dynamic Shear Rheometer (DSR). Five machine learning algorithms—multiple linear regression, support vector regression, artificial neural network, random forest, and eXtreme gradient boosting (XGBoost)—were utilized to construct the predictive models. A Bayesian optimization strategy was employed to fine-tune their hyperparameters. Laboratory findings revealed that a strong correlation was identified between changes in these functional groups, especially oxygen-containing functional groups, and the |G*| and δ values of asphalt binders. The optimized XGBoost model achieved exceptional predictive accuracy, with R2 values of 0.9998 for |G*| and 0.9999 for δ. Additionally, SHapley Additive exPlanations (SHAP) values were used to elucidate the underlying principles of the predictions. By leveraging FTIR data and rheological indicators, this work provides a novel data-driven approach to accurately estimate asphalt binder behaviour, reducing experimental effort while ensuring reliable performance evaluation.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdf
dc.identifier.citationZhang, F, Cannone Falchetto, A, Wang, D, Li, Z, Sun, Y & Lin, W 2025, 'Prediction of asphalt rheological properties for paving and maintenance assistance using explainable machine learning', Fuel, vol. 396, 135319. https://doi.org/10.1016/j.fuel.2025.135319en
dc.identifier.doi10.1016/j.fuel.2025.135319
dc.identifier.issn0016-2361
dc.identifier.issn1873-7153
dc.identifier.otherPURE UUID: 9a567770-0822-4384-ba9b-32b2199212a4
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/9a567770-0822-4384-ba9b-32b2199212a4
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=105002244519&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/179877393/1-s2.0-S0016236125010440-main.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/135138
dc.identifier.urnURN:NBN:fi:aalto-202504303448
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesFuelen
dc.relation.ispartofseriesVolume 396en
dc.rightsopenAccessen
dc.rightsCC BY
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.keywordAsphalt binders
dc.subject.keywordChemical composition
dc.subject.keywordExplainable machine learning
dc.subject.keywordRheological properties
dc.subject.keywordSHAP
dc.titlePrediction of asphalt rheological properties for paving and maintenance assistance using explainable machine learningen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0016236125010440-main.pdf
Size:
8.16 MB
Format:
Adobe Portable Document Format