Subword Representations Successfully Decode Brain Responses to Morphologically Complex Written Words
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
View publication in the Research portal
View/Open full text file from the Research portal
Date
2024
Major/Subject
Mcode
Degree programme
Language
en
Pages
20
Series
Neurobiology of language, Volume 5, issue 4, pp. 844-863
Abstract
This study extends the idea of decoding word-evoked brain activations using a corpus-semantic vector space to multimorphemic words in the agglutinative Finnish language. The corpus-semantic models are trained on word segments, and decoding is carried out with word vectors that are composed of these segments. We tested several alternative vector-space models using different segmentations: no segmentation (whole word), linguistic morphemes, statistical morphemes, random segmentation, and character-level 1-, 2- and 3-grams, and paired them with recorded MEG responses to multimorphemic words in a visual word recognition task. For all variants, the decoding accuracy exceeded the standard word-label permutation-based significance thresholds at 350–500 ms after stimulus onset. However, the critical segment-label permutation test revealed that only those segmentations that were morphologically aware reached significance in the brain decoding task. The results suggest that both whole-word forms and morphemes are represented in the brain and show that neural decoding using corpus-semantic word representations derived from compositional subword segments is applicable also for multimorphemic word forms. This is especially relevant for languages with complex morphology, because a large proportion of word forms are rare and it can be difficult to find statistically reliable surface representations for them in any large corpus.Description
Keywords
decoding, MEG, multimorphemic words, statistical morphemes, word2vec
Other note
Citation
Hakala, T, Lindh-Knuutila, T, Hulten, A, Lehtonen, M & Salmelin, R 2024, ' Subword Representations Successfully Decode Brain Responses to Morphologically Complex Written Words ', Neurobiology of language, vol. 5, no. 4, pp. 844-863 . https://doi.org/10.1162/nol_a_00149