Federated Deep Reinforcement Learning for Internet of Things with Decentralized Cooperative Edge Caching
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Wang, Xiaofei | en_US |
dc.contributor.author | Wang, Chenyang | en_US |
dc.contributor.author | Li, Xiuhua | en_US |
dc.contributor.author | Leung, Victor C.M. | en_US |
dc.contributor.author | Taleb, Tarik | en_US |
dc.contributor.department | Department of Communications and Networking | en |
dc.contributor.groupauthor | Mobile Network Softwarization and Service Customization | en |
dc.contributor.organization | Tianjin University | en_US |
dc.contributor.organization | Chongqing University | en_US |
dc.contributor.organization | Shenzhen University | en_US |
dc.date.accessioned | 2020-11-06T11:39:20Z | |
dc.date.available | 2020-11-06T11:39:20Z | |
dc.date.issued | 2020-10 | en_US |
dc.description | | openaire: EC/H2020/871780/EU//MonB5G | |
dc.description.abstract | Edge caching is an emerging technology for addressing massive content access in mobile networks to support rapidly growing Internet-of-Things (IoT) services and applications. However, most current optimization-based methods lack a self-adaptive ability in dynamic environments. To tackle these challenges, current learning-based approaches are generally proposed in a centralized way. However, network resources may be overconsumed during the training and data transmission process. To address the complex and dynamic control issues, we propose a federated deep-reinforcement-learning-based cooperative edge caching (FADE) framework. FADE enables base stations (BSs) to cooperatively learn a shared predictive model by considering the first-round training parameters of the BSs as the initial input of the local training, and then uploads near-optimal local parameters to the BSs to participate in the next round of global training. Furthermore, we prove the expectation convergence of FADE. Trace-driven simulation results demonstrate the effectiveness of the proposed FADE framework on reducing the performance loss and average delay, offloading backhaul traffic, and improving the hit rate. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 15 | |
dc.format.extent | 9441-9455 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Wang, X, Wang, C, Li, X, Leung, V C M & Taleb, T 2020, ' Federated Deep Reinforcement Learning for Internet of Things with Decentralized Cooperative Edge Caching ', IEEE Internet of Things Journal, vol. 7, no. 10, 9062302, pp. 9441-9455 . https://doi.org/10.1109/JIOT.2020.2986803 | en |
dc.identifier.doi | 10.1109/JIOT.2020.2986803 | en_US |
dc.identifier.issn | 2327-4662 | |
dc.identifier.other | PURE UUID: 9275f8aa-8abf-452b-a5a4-754a627d18f8 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/9275f8aa-8abf-452b-a5a4-754a627d18f8 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85087622595&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/52538818/Federated_deep_reinforcement_learning.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/47462 | |
dc.identifier.urn | URN:NBN:fi:aalto-202011066354 | |
dc.language.iso | en | en |
dc.publisher | IEEE | |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/871780/EU//MonB5G | en_US |
dc.relation.ispartofseries | IEEE Internet of Things Journal | en |
dc.relation.ispartofseries | Volume 7, issue 10 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Cooperative caching | en_US |
dc.subject.keyword | deep reinforcement learning (DRL) | en_US |
dc.subject.keyword | edge caching | en_US |
dc.subject.keyword | federated learning | en_US |
dc.subject.keyword | hit rate | en_US |
dc.subject.keyword | Internet of Things (IoT) | en_US |
dc.title | Federated Deep Reinforcement Learning for Internet of Things with Decentralized Cooperative Edge Caching | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | acceptedVersion |