Generalized 3-Valued Belief States in Conformant Planning
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Rintanen, Jussi | en_US |
dc.contributor.author | Fadnis, Saurabh | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.editor | Khanna, Sankalp | en_US |
dc.contributor.editor | Cao, Jian | en_US |
dc.contributor.editor | Bai, Quan | en_US |
dc.contributor.editor | Xu, Guandong | en_US |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) - Research area | en |
dc.contributor.groupauthor | Professorship Rintanen Jussi | en |
dc.contributor.organization | Professorship Rintanen Jussi | en_US |
dc.date.accessioned | 2024-01-04T09:13:57Z | |
dc.date.available | 2024-01-04T09:13:57Z | |
dc.date.issued | 2022-11 | en_US |
dc.description.abstract | The high complexity of planning with partial observability has motivated to find compact representations of belief state (sets of states) that reduce their size exponentially, including the 3-valued literal-based approximations by Baral et al. and tag-based approximations by Palacios and Geffner. We present a generalization of 3-valued literal-based approximations, and an algorithm that analyzes a succinctly represented planning problem to derive a set of formulas the truth of which accurately represents any reachable belief state. This set is not limited to literals and can contain arbitrary formulas. We demonstrate that a factored representation of belief states based on this analysis enables fully automated reduction of conformant planning problems to classical planning, bypassing some of the limitations of earlier approaches. | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Rintanen, J & Fadnis, S 2022, Generalized 3-Valued Belief States in Conformant Planning . in S Khanna, J Cao, Q Bai & G Xu (eds), PRICAI 2022: Trends in Artificial Intelligence - 19th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2022, Shanghai, China, November 10-13, 2022, Proceedings . Lecture Notes in Computer Science, vol. 13629 LNCS, Springer, pp. 104-117, Pacific Rim International Conference on Artificial Intelligence, Shanghai, China, 10/11/2022 . https://doi.org/10.1007/978-3-031-20862-1_8 | en |
dc.identifier.doi | 10.1007/978-3-031-20862-1_8 | en_US |
dc.identifier.isbn | 978-3-031-20861-4 | |
dc.identifier.isbn | 978-3-031-20862-1 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.other | PURE UUID: d535b653-6f43-41ab-99b9-855f9717e8ca | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/d535b653-6f43-41ab-99b9-855f9717e8ca | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85144497581&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/130649246/SCI_Rintanen_Generalized_3-Valued_Belief_States_in_Conformant_Planning.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/125540 | |
dc.identifier.urn | URN:NBN:fi:aalto-202401041229 | |
dc.language.iso | en | en |
dc.relation.ispartof | Pacific Rim International Conference on Artificial Intelligence | en |
dc.relation.ispartofseries | PRICAI 2022: Trends in Artificial Intelligence - 19th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2022, Shanghai, China, November 10-13, 2022, Proceedings | en |
dc.relation.ispartofseries | pp. 104-117 | en |
dc.relation.ispartofseries | Lecture Notes in Computer Science ; Volume 13629 LNCS | en |
dc.rights | openAccess | en |
dc.title | Generalized 3-Valued Belief States in Conformant Planning | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | acceptedVersion |