Endpoint regularity of maximal functions in higher dimensions

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorKinnunen, Juha, Prof., Aalto University, Department of Mathematics and Systems Analysis, Finland
dc.contributor.authorWeigt, Julian
dc.contributor.departmentMatematiikan ja systeemianalyysin laitosfi
dc.contributor.departmentDepartment of Mathematics and Systems Analysisen
dc.contributor.labNonlinear Partial Differential Equations research groupen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.contributor.supervisorKinnunen, Juha, Prof., Aalto University, Department of Mathematics and Systems Analysis, Finland
dc.date.accessioned2022-10-07T09:00:07Z
dc.date.available2022-10-07T09:00:07Z
dc.date.defence2022-10-21
dc.date.issued2022
dc.description.abstractIt is well known that the Hardy-Littlewood maximal operator is bounded on Lebesgue spaces if the exponent is strictly larger than one, and that this bound fails when the Lebesgue exponent is equal to one. Similarly, the gradient of the Hardy-Littlewood maximal function is bounded by the gradient of the function when the Lebesgue exponent is strictly larger than one, but it has been an open question whether this also holds when the Lebesgue exponent equals one. This endpoint regularity bound has been conjectured to hold, but only proven fully in one imension, using a simple formula for the variation of semi-continuous functions on the real line. In higher-dimensional Euclidean spaces the bound has been proven for the maximal function of radial functions, where again one-dimensional considerations suffice.The only fully known endpoint regularity bounds in higher dimensions concern some fractional maximal operators, which however are not of the same form as in the aforementioned conjecture. In this thesis we present the first proof of the endpoint boundedness of the gradient of a maximal operator in all dimensions. In the first two papers we prove the endpoint regularity ofthe uncentered Hardy-Littlewood maximal function of characteristic functions and of the dyadic maximal function of any function. We then generalize and combine the insights which we gained in order to prove further endpoint regularity bounds: We prove the corresponding endpoint bound for the gradient of the centered and of the uncentered fractional Hardy-Littlewood maximal function, and we eventually also prove their endpoint continuity. We conclude this thesis by showing a proof for the endpoint regularity bound for the cube maximal function, answering the long-standing endpoint regularity question for an uncentered maximal operator when averaging over cubes instead of balls. Our results also hold for the local versions of the above maximal operators, excluding fractional maximal operators. The starting point in our proofs is to view the variation of a function in terms of the coarea formula. We then prove and apply higher-dimensional geometric tools which involve the interplay between volume and perimeter such as the relative isoperimetric inequality, covering lemmas that concern the boundary of a set, dyadic decompositions of functions, and approximation arguments in Sobolev spaces.en
dc.format.extent60 + app. 120
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-64-0949-8 (electronic)
dc.identifier.isbn978-952-64-0948-1 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/117016
dc.identifier.urnURN:ISBN:978-952-64-0949-8
dc.language.isoenen
dc.opnCarneiro, Emanuel, Prof., Abdus Salam International Centre for Theoretical Physics, Italy
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Julian Weigt. Variation of the maximal uncentered characteristic function. Accepted for publication in Revista Matemática Iberoamericana, 27 pages, November 2021
dc.relation.haspart[Publication 2]: Julian Weigt. Variation of the dyadic maximal function. Accepted for publication in International Mathematical Research Notices, 21 pages, March 2022
dc.relation.haspart[Publication 3]: Julian Weigt. Endpoint sobolev bounds for the uncentered fractional maximal function. Accepted for publication in Mathematische Zeitschrift, 21 pages, February 2022
dc.relation.haspart[Publication 4]: David Beltran, Cristian González-Riquelme, José Madrid and Julian Weigt. Continuity of the gradient of the fractional maximal operator on W1,1(Rd). Accepted for publication in Mathematical Research Letters, 12 pages, November 2021
dc.relation.haspart[Publication 5]: Julian Weigt. The variation of the uncentered maximal operator with respect to cubes. Submitted to a journal, September 2021
dc.relation.ispartofseriesAalto University publication series DOCTORAL THESESen
dc.relation.ispartofseries134/2022
dc.revAldaz, Jesús Munárriz, Prof., Universidad Autónoma de Madrid, Spain
dc.revCruz-Uribe, David, Prof., University of Alabama, USA
dc.subject.keywordmaximal functionen
dc.subject.keywordvariationen
dc.subject.otherMathematicsen
dc.titleEndpoint regularity of maximal functions in higher dimensionsen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2022-10-21_0813
local.aalto.archiveyes
local.aalto.formfolder2022_10_06_klo_12_47
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526409498.pdf
Size:
456.8 KB
Format:
Adobe Portable Document Format