Explainable time series tweaking via irreversible and reversible temporal transformations

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
Conference article in proceedings
This publication is imported from Aalto University research portal.
View publication in the Research portal

Other link related to publication
Date
2018
Major/Subject
Mcode
Degree programme
Language
en
Pages
207-216
Series
2018 IEEE International Conference on Data Mining (ICDM), International Conference on Data Mining Proceedings
Abstract
Time series classification has received great attention over the past decade with a wide range of methods focusing on predictive performance by exploiting various types of temporal features. Nonetheless, little emphasis has been placed on interpretability and explainability. In this paper, we formulate the novel problem of explainable time series tweaking, where, given a time series and an opaque classifier that provides a particular classification decision for the time series, we want to find the minimum number of changes to be performed to the given time series so that the classifier changes its decision to another class. We show that the problem is NP-hard, and focus on two instantiations of the problem, which we refer to as reversible and irreversible time series tweaking. The classifier under investigation is the random shapelet forest classifier. Moreover, we propose two algorithmic solutions for the two problems along with simple optimizations, as well as a baseline solution using the nearest neighbor classifier. An extensive experimental evaluation on a variety of real datasets demonstrates the usefulness and effectiveness of our problem formulation and solutions.
Description
| openaire: EC/H2020/654024/EU//SoBigData
Keywords
Other note
Citation
Karlsson , I , Rebane , J , Papapetrou , P & Gionis , A 2018 , Explainable time series tweaking via irreversible and reversible temporal transformations . in 2018 IEEE International Conference on Data Mining, ICDM 2018 . , 8594845 , International Conference on Data Mining Proceedings , IEEE , pp. 207-216 , IEEE International Conference on Data Mining , Singapore , Singapore , 17/11/2018 . https://doi.org/10.1109/ICDM.2018.00036