Second-order homogenization of 3-D lattice materials towards strain gradient media: numerical modelling and experimental verification

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMolavitabrizi, Danialen_US
dc.contributor.authorKhakalo, Sergeien_US
dc.contributor.authorBengtsson, Rhodelen_US
dc.contributor.authorMousavi, S. Mahmouden_US
dc.contributor.departmentDepartment of Civil Engineeringen
dc.contributor.groupauthorStructures – Structural Engineering, Mechanics and Computationen
dc.contributor.organizationUppsala Universityen_US
dc.date.accessioned2023-10-25T07:33:47Z
dc.date.available2023-10-25T07:33:47Z
dc.date.issued2023-11en_US
dc.description.abstractThe literature in the field of higher-order homogenization is mainly focused on 2-D models aimed at composite materials, while it lacks a comprehensive model targeting 3-D lattice materials (with void being the inclusion) with complex cell topologies. For that, a computational homogenization scheme based on Mindlin (type II) strain gradient elasticity theory is developed here. The model is based on variational formulation with periodic boundary conditions, implemented in the open-source software FreeFEM to fully characterize the effective classical elastic, coupling, and gradient elastic matrices in lattice materials. Rigorous mathematical derivations based on equilibrium equations and Hill–Mandel lemma are provided, resulting in the introduction of macroscopic body forces and modifications in gradient elasticity tensors which eliminate the spurious gradient effects in the homogeneous material. The obtained homogenized classical and strain gradient elasticity matrices are positive definite, leading to a positive macroscopic strain energy density value—an important criterion that sometimes is overlooked. The model is employed to study the size effects in 2-D square and 3-D cubic lattice materials. For the case of 3-D cubic material, the model is verified using full-field simulations, isogeometric analysis, and experimental three-point bending tests. The results of computational homogenization scheme implemented through isogeometric simulations show a good agreement with full-field simulations and mechanical tests. The developed model is generic and can be used to derive the effective second-grade continuum for any 3-D architectured material with arbitrary geometry. However, the identification of the proper type of generalized continua for the mechanical analysis of different cell architectures is yet an open question.en
dc.description.versionPeer revieweden
dc.format.extent20
dc.format.extent2255-2274
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMolavitabrizi, D, Khakalo, S, Bengtsson, R & Mousavi, S M 2023, ' Second-order homogenization of 3-D lattice materials towards strain gradient media: numerical modelling and experimental verification ', Continuum Mechanics and Thermodynamics, vol. 35, no. 6, pp. 2255-2274 . https://doi.org/10.1007/s00161-023-01246-4en
dc.identifier.doi10.1007/s00161-023-01246-4en_US
dc.identifier.issn0935-1175
dc.identifier.otherPURE UUID: 215a55b9-7ed7-45ab-a466-c700fba65551en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/215a55b9-7ed7-45ab-a466-c700fba65551en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85166336240&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/125312347/s00161-023-01246-4.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/124226
dc.identifier.urnURN:NBN:fi:aalto-202310256599
dc.language.isoenen
dc.publisherSpringer
dc.relation.ispartofseriesCONTINUUM MECHANICS AND THERMODYNAMICSen
dc.relation.ispartofseriesVolume 35en
dc.rightsopenAccessen
dc.subject.keywordSecond-order homogenizationen_US
dc.subject.keywordGradient elasticityen_US
dc.subject.keywordLattice materialsen_US
dc.subject.keywordExperimental validationen_US
dc.subject.keywordSize effecten_US
dc.titleSecond-order homogenization of 3-D lattice materials towards strain gradient media: numerical modelling and experimental verificationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files