Quantized Evolution of the Plasmonic Response in a Stretched Nanorod

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2015-12-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
6
1-6
Series
PHYSICAL REVIEW LETTERS, Volume 115, issue 23
Abstract
We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be described by a pseudomagnetic field and result in the formation of Landau levels. We show that the pseudomagnetic field leads to measurable experimental signatures in momentum resolved Bragg spectroscopy, Bloch oscillations, cyclotron motion, and quantization of in situ densities. Our proposal can be realized by a slight modification of existing experiments. In contrast to previous methods, pseudomagnetic fields are realized in a completely static system avoiding common heating effects and therefore opening the door to studying interaction effects in Landau levels with cold atoms.
Description
Keywords
electronic structure, nanoparticles, plasmonics, time-dependent density-functional theory
Other note
Citation
Rossi , T P , Zugarramurdi , A , Puska , M J & Nieminen , R M 2015 , ' Quantized Evolution of the Plasmonic Response in a Stretched Nanorod ' , Physical Review Letters , vol. 115 , no. 23 , 236804 , pp. 1-6 . https://doi.org/10.1103/PhysRevLett.115.236804