Quantized Evolution of the Plasmonic Response in a Stretched Nanorod

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2015-12-01

Major/Subject

Mcode

Degree programme

Language

en

Pages

6
1-6

Series

PHYSICAL REVIEW LETTERS, Volume 115, issue 23

Abstract

We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be described by a pseudomagnetic field and result in the formation of Landau levels. We show that the pseudomagnetic field leads to measurable experimental signatures in momentum resolved Bragg spectroscopy, Bloch oscillations, cyclotron motion, and quantization of in situ densities. Our proposal can be realized by a slight modification of existing experiments. In contrast to previous methods, pseudomagnetic fields are realized in a completely static system avoiding common heating effects and therefore opening the door to studying interaction effects in Landau levels with cold atoms.

Description

Keywords

electronic structure, nanoparticles, plasmonics, time-dependent density-functional theory

Other note

Citation

Rossi , T P , Zugarramurdi , A , Puska , M J & Nieminen , R M 2015 , ' Quantized Evolution of the Plasmonic Response in a Stretched Nanorod ' , Physical Review Letters , vol. 115 , no. 23 , 236804 , pp. 1-6 . https://doi.org/10.1103/PhysRevLett.115.236804