Stability of Cu-precipitates in Al-Cu alloys
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Applied Sciences, Volume 8, issue 6, pp. 1-13
Abstract
We present first principle calculations on formation and binding energies for Cu and Zn as solute atoms forming small clusters up to nine atoms in Al-Cu and Al-Zn alloys. We employ a density-functional approach implemented using projector-augmented waves and plane wave expansions. We find that some structures, in which Cu atoms are closely packed on (100)-planes, turn out to be extraordinary stable. We compare the results with existing numerical or experimental data when possible. We find that Cu atoms precipitating in the form of two-dimensional platelets on (100)-planes in the fcc aluminum are more stable than three-dimensional structures consisting of the same number of Cu-atoms. The preference turns out to be opposite for Zn in Al. Both observations are in agreement with experimental observations.Description
Other note
Citation
Staab, T E M, Folegati, P, Wolfertz, I & Puska, M J 2018, 'Stability of Cu-precipitates in Al-Cu alloys', Applied Sciences, vol. 8, no. 6, 1003, pp. 1-13. https://doi.org/10.3390/app8061003