A Survey on Reinforcement Learning-Aided Caching in Heterogeneous Mobile Edge Networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNomikos, Nikolaosen_US
dc.contributor.authorZoupanos, Spyrosen_US
dc.contributor.authorCharalambous, Themistoklisen_US
dc.contributor.authorKrikidis, Ioannisen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorDistributed and Networked Control Systemsen
dc.contributor.organizationUniversity of Cyprusen_US
dc.contributor.organizationIonian Universityen_US
dc.date.accessioned2022-01-26T07:49:04Z
dc.date.available2022-01-26T07:49:04Z
dc.date.issued2022-01en_US
dc.descriptionPublisher Copyright: Author
dc.description.abstractMobile networks experience a tremendous increase in data volume and user density due to the massive number of coexisting users and devices. An efficient technique to alleviate this issue is to bring the data closer to the users by exploiting cache-aided edge nodes, such as fixed and mobile access points, and even user devices. Meanwhile, the fusion of machine learning and wireless networks offers new opportunities for network optimization when traditional optimization approaches fail or incur high complexity. Among the various machine learning categories, reinforcement learning provides autonomous operation without relying on large sets of historical data for training. In this survey, reinforcement learning-aided mobile edge caching solutions are presented and classified, based on the networking architecture and optimization target. As sixth generation (6G) networks will be characterized by high heterogeneity, fixed cellular, fog, cooperative, vehicular, and aerial networks are studied. The discussion of these works reveals that there exist reinforcement learning-aided caching schemes with varying complexity that can surpass the performance of conventional policy-based approaches. Finally, several open issues are presented, stimulating further interest in this important research field.en
dc.description.versionPeer revieweden
dc.format.extent34
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNomikos, N, Zoupanos, S, Charalambous, T & Krikidis, I 2022, ' A Survey on Reinforcement Learning-Aided Caching in Heterogeneous Mobile Edge Networks ', IEEE Access, vol. 10, pp. 4380-4413 . https://doi.org/10.1109/ACCESS.2022.3140719en
dc.identifier.doi10.1109/ACCESS.2022.3140719en_US
dc.identifier.issn2169-3536
dc.identifier.otherPURE UUID: b475941c-f8ee-406c-9fa1-260066028b64en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b475941c-f8ee-406c-9fa1-260066028b64en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85122849846&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/78602741/ELEC_Nomikos_etal_A_Survey_on_Reinforcement_Learning_Aided_Caching_IEEE_Access_2022.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/112571
dc.identifier.urnURN:NBN:fi:aalto-202201261472
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Accessen
dc.relation.ispartofseriesVolume 10, pp. 4380-4413en
dc.rightsopenAccessen
dc.subject.keyword6Gen_US
dc.subject.keyword6G mobile communicationen_US
dc.subject.keywordedge cachingen_US
dc.subject.keywordheterogeneous networksen_US
dc.subject.keywordmachine learningen_US
dc.subject.keywordmobile edge networksen_US
dc.subject.keywordOptimizationen_US
dc.subject.keywordreinforcement learningen_US
dc.subject.keywordTask analysisen_US
dc.subject.keywordTaxonomyen_US
dc.subject.keywordTerminologyen_US
dc.subject.keywordWireless communicationen_US
dc.subject.keywordWireless networksen_US
dc.titleA Survey on Reinforcement Learning-Aided Caching in Heterogeneous Mobile Edge Networksen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files