HPOFiller: identifying missing protein–phenotype associations by graph convolutional network

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2021-09-15

Major/Subject

Mcode

Degree programme

Language

en

Pages

9
3328–3336

Series

Bioinformatics, Volume 37, issue 19

Abstract

Motivation: Exploring the relationship between human proteins and abnormal phenotypes is of great importance in the prevention, diagnosis and treatment of diseases. The human phenotype ontology (HPO) is a standardized vocabulary that describes the phenotype abnormalities encountered in human diseases. However, the current HPO annotations of proteins are not complete. Thus, it is important to identify missing protein-phenotype associations. Results: We propose HPOFiller, a graph convolutional network (GCN)-based approach, for predicting missing HPO annotations. HPOFiller has two key GCN components for capturing embeddings from complex network structures: (i) S-GCN for both protein-protein interaction network and HPO semantic similarity network to utilize network weights; (ii) Bi-GCN for the protein-phenotype bipartite graph to conduct message passing between proteins and phenotypes. The core idea of HPOFiller is to repeat run these two GCN modules consecutively over the three networks, to refine the embeddings. Empirical results of extremely stringent evaluation avoiding potential information leakage including cross-validation and temporal validation demonstrates that HPOFiller significantly outperforms all other state-of-the-art methods. In particular, the ablation study shows that batch normalization contributes the most to the performance. The further examination offers literature evidence for highly ranked predictions. Finally using known disease-HPO term associations, HPOFiller could suggest promising, unknown disease-gene associations, presenting possible genetic causes of human disorders.

Description

Keywords

Other note

Citation

Liu, L, Mamitsuka, H & Zhu, S 2021, ' HPOFiller: identifying missing protein–phenotype associations by graph convolutional network ', Bioinformatics, vol. 37, no. 19, pp. 3328–3336 . https://doi.org/10.1093/bioinformatics/btab224