HPOFiller: identifying missing protein–phenotype associations by graph convolutional network

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Date
2021-09-15
Major/Subject
Mcode
Degree programme
Language
en
Pages
9
3328–3336
Series
Bioinformatics, Volume 37, issue 19
Abstract
Motivation: Exploring the relationship between human proteins and abnormal phenotypes is of great importance in the prevention, diagnosis and treatment of diseases. The human phenotype ontology (HPO) is a standardized vocabulary that describes the phenotype abnormalities encountered in human diseases. However, the current HPO annotations of proteins are not complete. Thus, it is important to identify missing protein-phenotype associations. Results: We propose HPOFiller, a graph convolutional network (GCN)-based approach, for predicting missing HPO annotations. HPOFiller has two key GCN components for capturing embeddings from complex network structures: (i) S-GCN for both protein-protein interaction network and HPO semantic similarity network to utilize network weights; (ii) Bi-GCN for the protein-phenotype bipartite graph to conduct message passing between proteins and phenotypes. The core idea of HPOFiller is to repeat run these two GCN modules consecutively over the three networks, to refine the embeddings. Empirical results of extremely stringent evaluation avoiding potential information leakage including cross-validation and temporal validation demonstrates that HPOFiller significantly outperforms all other state-of-the-art methods. In particular, the ablation study shows that batch normalization contributes the most to the performance. The further examination offers literature evidence for highly ranked predictions. Finally using known disease-HPO term associations, HPOFiller could suggest promising, unknown disease-gene associations, presenting possible genetic causes of human disorders.
Description
Keywords
Other note
Citation
Liu , L , Mamitsuka , H & Zhu , S 2021 , ' HPOFiller: identifying missing protein–phenotype associations by graph convolutional network ' , Bioinformatics , vol. 37 , no. 19 , pp. 3328–3336 . https://doi.org/10.1093/bioinformatics/btab224