Discrete event simulation for dynamic thermal modelling of district heating pipe

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorXie, Zichanen_US
dc.contributor.authorWang, Haichaoen_US
dc.contributor.authorHua, Pengminen_US
dc.contributor.authorLahdelma, Ristoen_US
dc.contributor.departmentDepartment of Mathematics and Systems Analysisen
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorOperations Research and Systems Analysisen
dc.contributor.groupauthorEnergy Conversion and Systemsen
dc.date.accessioned2023-11-15T08:26:25Z
dc.date.available2023-11-15T08:26:25Z
dc.date.issued2023-12-15en_US
dc.descriptionFunding Information: This study was supported by academy research fellow funding from Research Council of Finland (Funding No. 334205 and 358055 ). Publisher Copyright: © 2023 The Authors
dc.description.abstractOptimizing district heating (DH) systems in a holistic manner is often impeded by the computational complexities associated with network modeling. This study introduces a novel, efficient and theoretically accurate method for dynamic thermal modelling of DH pipes. The approach is to track water frontiers traveling along the pipe using discrete event simulation (DES) paradigm. As the DES method is based on variable time steps, the computational effort is significantly reduced compared to earlier methods. The proposed model can compute outlet water temperature, temperature profile along the pipe, and heat loss based on variable inlet temperature and flow rate. The DES model was validated by comparison with real measurements of a long DH pipe. Four variants of the model with different temperature profile assumptions and interpolation methods were compared. Numerical results show that the DES model can accurately predict outlet water temperature with a maximum discrepancy of 0.52 °C. The mean error of simulated outlet temperature was −0.01 ± 0.02 °C. Average computation time for 24-h simulation was 59 μs. Overall, this study shows that the DES method is appropriate for variable time step simulation for DH pipe, potentially, for network simulation. Our study may also inspire variable time step implementation in other energy applications.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.extent1-11
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationXie, Z, Wang, H, Hua, P & Lahdelma, R 2023, ' Discrete event simulation for dynamic thermal modelling of district heating pipe ', Energy, vol. 285, 129523, pp. 1-11 . https://doi.org/10.1016/j.energy.2023.129523en
dc.identifier.doi10.1016/j.energy.2023.129523en_US
dc.identifier.issn0360-5442
dc.identifier.issn1873-6785
dc.identifier.otherPURE UUID: 37a25f27-ce1f-4215-aafe-bdbe73bbf1b5en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/37a25f27-ce1f-4215-aafe-bdbe73bbf1b5en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85175457181&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/128046743/Discrete_event_simulation_for_dynamic_thermal_modelling_of_district_heating_pipe.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/124458
dc.identifier.urnURN:NBN:fi:aalto-202311156816
dc.language.isoenen
dc.publisherElsevier Ltd
dc.relation.ispartofseriesEnergyen
dc.relation.ispartofseriesVolume 285en
dc.rightsopenAccessen
dc.subject.keywordDiscrete event simulationen_US
dc.subject.keywordDistrict heat pipeen_US
dc.subject.keywordDynamic thermal simulationen_US
dc.subject.keywordHeat lossesen_US
dc.subject.keywordLagrangian methoden_US
dc.subject.keywordVariable time stepen_US
dc.titleDiscrete event simulation for dynamic thermal modelling of district heating pipeen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files