Time-based Sensor Interface for Dopamine Detection

Loading...
Thumbnail Image

Access rights

openAccess
acceptedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

13

Series

IEEE Transactions on Circuits and Systems I-Regular Papers, Volume 67, issue 10, pp. 3284-3296

Abstract

This paper describes the design of an integrated sensor interface for dopamine detection. The sensor interface circuit fabricated in 65 nm CMOS technology utilizes a time-based analog-to-digital conversion circuit built around a ring oscillator. The circuit supports a wide input current range of±1.2 µA and sampling rate of 1 - 20 kHz, enabling sub-second detection of neurochemicals within the supported current range. Measured results with physiologically relevant dopamine concentration of 500 nM demonstrate the ability of the sensor interface circuit to detect oxidation and reduction current peaks, which provides information about the release times and redox potentials of the neurochemical. This chemical information is essential in neurostimulation treatment of neurological and neurodegenerative diseases.

Description

Other note

Citation

Olabode, O, Kosunen, M, Unnikrishnan, V, Palomäki, T, Laurila, T, Halonen, K & Ryynänen, J 2020, 'Time-based Sensor Interface for Dopamine Detection', IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 67, no. 10, 9144288, pp. 3284-3296. https://doi.org/10.1109/TCSI.2020.3008363