Generative AI for graph-based drug design: Recent advances and the way forward
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Garg, Vikas | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) | en |
dc.contributor.groupauthor | Professorship Garg Vikas | en |
dc.date.accessioned | 2024-02-07T08:20:30Z | |
dc.date.available | 2024-02-07T08:20:30Z | |
dc.date.issued | 2024-02 | en_US |
dc.description.abstract | Discovering new promising molecule candidates that could translate into effective drugs is a key scientific pursuit. However, factors such as the vastness and discreteness of the molecular search space pose a formidable technical challenge in this quest. AI-driven generative models can effectively learn from data, and offer hope to streamline drug design. In this article, we review state of the art in generative models that operate on molecular graphs. We also shed light on some limitations of the existing methodology and sketch directions to harness the potential of AI for drug design tasks going forward. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 8 | |
dc.format.extent | 1-8 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Garg, V 2024, ' Generative AI for graph-based drug design: Recent advances and the way forward ', Current Opinion in Structural Biology, vol. 84, 102769, pp. 1-8 . https://doi.org/10.1016/j.sbi.2023.102769 | en |
dc.identifier.doi | 10.1016/j.sbi.2023.102769 | en_US |
dc.identifier.issn | 0959-440X | |
dc.identifier.other | PURE UUID: a7325110-3a4e-4448-9bc0-6ceede9ce4ca | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/a7325110-3a4e-4448-9bc0-6ceede9ce4ca | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85183715751&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/135722870/Generative_AI_for_graph-based_drug_design.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/126706 | |
dc.identifier.urn | URN:NBN:fi:aalto-202402072365 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Current Opinion in Structural Biology | en |
dc.relation.ispartofseries | Volume 84 | en |
dc.rights | openAccess | en |
dc.title | Generative AI for graph-based drug design: Recent advances and the way forward | en |
dc.type | A2 Katsausartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |