Physics-informed machine learning for grade prediction in froth flotation
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Nasiri Abarbekouh, Mahdi | |
dc.contributor.author | Iqbal, Sahel | |
dc.contributor.author | Särkkä, Simo | |
dc.contributor.department | Department of Electrical Engineering and Automation | en |
dc.contributor.groupauthor | Sensor Informatics and Medical Technology | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.organization | Sensor Informatics and Medical Technology | |
dc.date.accessioned | 2025-04-30T07:33:07Z | |
dc.date.available | 2025-04-30T07:33:07Z | |
dc.date.issued | 2025-07-15 | |
dc.description | Publisher Copyright: © 2025 The Authors | |
dc.description.abstract | In this paper, physics-informed neural network models are developed to predict the concentrate gold grade in froth flotation cells. Accurate prediction of concentrate grades is important for the automatic control and optimization of mineral processing. Both first-principles and data-driven machine learning methods have been used to model the flotation process. The complexity of models based on first-principles restricts their direct use, while purely data-driven models often fail in dynamic industrial environments, leading to poor generalization. To address these limitations, this study integrates classical mathematical models of froth flotation processes with conventional deep learning methods to construct physics-informed neural networks. The models are trained, evaluated, and tested on datasets generated from a digital twin model of flotation cells that merges real-process data with physics-based simulations, with data collected over nearly half a year at a five-minute sampling rate. Compared to the best purely data-driven model, the top-performing physics-informed neural network reduced the mean squared error by 65% and the mean relative error by 34%, demonstrating superior generalization and predictive performance. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 12 | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Nasiri Abarbekouh, M, Iqbal, S & Särkkä, S 2025, 'Physics-informed machine learning for grade prediction in froth flotation', Minerals Engineering, vol. 227, 109297. https://doi.org/10.1016/j.mineng.2025.109297 | en |
dc.identifier.doi | 10.1016/j.mineng.2025.109297 | |
dc.identifier.issn | 0892-6875 | |
dc.identifier.issn | 1872-9444 | |
dc.identifier.other | PURE UUID: a8e922b9-2b5f-4892-abfd-64a165b5158c | |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/a8e922b9-2b5f-4892-abfd-64a165b5158c | |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=105002400833&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/179870140/Physics-informed_machine_learning_for_grade_prediction_in_froth_flotation.pdf | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/135144 | |
dc.identifier.urn | URN:NBN:fi:aalto-202504303454 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Minerals Engineering | en |
dc.relation.ispartofseries | Volume 227 | en |
dc.rights | openAccess | en |
dc.rights | CC BY | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.keyword | Froth flotation | |
dc.subject.keyword | Machine learning | |
dc.subject.keyword | Physics-informed neural networks | |
dc.subject.keyword | Predictive modeling | |
dc.title | Physics-informed machine learning for grade prediction in froth flotation | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Physics-informed_machine_learning_for_grade_prediction_in_froth_flotation.pdf
- Size:
- 3.52 MB
- Format:
- Adobe Portable Document Format