Analyzing national and local pathways to carbon-neutrality from technology, emissions, and resilience perspectives—Case of Finland
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2019-01-01
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
22
Series
Energies, Volume 12, issue 5
Abstract
The Paris Climate Accord calls for urgent CO 2 reductions. Here we investigate low and zero carbon pathways based on clean electricity and sector coupling. Effects from different spatialities are considered through city and national cases (Helsinki and Finland). The methodology employs techno-economic energy system optimization, including resilience aspects. In the Finnish case, wind, nuclear, and biomass coupled to power-to-heat and other flexibility measures could provide a cost-effective carbon-neutral pathway (annual costs −18%), but nuclear and wind are, to some extent, exclusionary. A (near) carbon-neutral energy system seems possible even without nuclear (−94% CO 2 ). Zero-carbon energy production benefits from a stronger link to the broader electricity market albeit flexibility measures. On the city level, wind would not easily replace local combined heat and power (CHP), but may increase electricity export. In the Helsinki case, a business-as-usual approach could halve emissions and annual costs, while in a comprehensive zero-emission approach, the operating costs (OPEX) could decrease by 87%. Generally, electrification of heat production could be effective to reduce CO 2 . Low or zero carbon solutions have a positive impact on resilience, but in the heating sector this is more problematic, e.g., power outage and adequacy of supply during peak demand will require more attention when planning future carbon-free energy systems.Description
Keywords
Carbon neutrality, Energy system modelling, Photovoltaics, Renewable energy, Sector coupling, Urban energy, Wind power
Other note
Citation
Pilpola, S, Arabzadeh, V, Mikkola, J & Lund, P D 2019, ' Analyzing national and local pathways to carbon-neutrality from technology, emissions, and resilience perspectives—Case of Finland ', Energies, vol. 12, no. 5, 949 . https://doi.org/10.3390/en12050949