Time-Varying EEG Correlations Improve Automated Neonatal Seizure Detection

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTapani, Karoliina T.en_US
dc.contributor.authorVanhatalo, Sampsaen_US
dc.contributor.authorStevenson, Nathan J.en_US
dc.contributor.departmentDepartment of Neuroscience and Biomedical Engineeringen
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2020-12-31T08:36:59Z
dc.date.available2020-12-31T08:36:59Z
dc.date.issued2019-05-01en_US
dc.description| openaire: EC/H2020/656131/EU//APE
dc.description.abstractThe aim of this study was to develop methods for detecting the nonstationary periodic characteristics of neonatal electroencephalographic (EEG) seizures by adapting estimates of the correlation both in the time (spike correlation; SC) and time-frequency domain (time-frequency correlation; TFC). These measures were incorporated into a seizure detection algorithm (SDA) based on a support vector machine to detect periods of seizure and nonseizure. The performance of these nonstationary correlation measures was evaluated using EEG recordings from 79 term neonates annotated by three human experts. The proposed measures were highly discriminative for seizure detection (median AUCSC: 0.933 IQR: 0.821-0.975, median AUCTFC: 0.883 IQR: 0.707-0.931). The resultant SDA applied to multi-channel recordings had a median AUC of 0.988 (IQR: 0.931-0.998) when compared to consensus annotations, outperformed two state-of-the-art SDAs (p < 0.001) and was noninferior to the human expert for 73/79 of neonates.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTapani, K T, Vanhatalo, S & Stevenson, N J 2019, ' Time-Varying EEG Correlations Improve Automated Neonatal Seizure Detection ', International Journal of Neural Systems, vol. 29, no. 4, 1850030 . https://doi.org/10.1142/S0129065718500302en
dc.identifier.doi10.1142/S0129065718500302en_US
dc.identifier.issn0129-0657
dc.identifier.issn1793-6462
dc.identifier.otherPURE UUID: 10548619-78cf-4c7e-8d3f-c57fbba0ca79en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/10548619-78cf-4c7e-8d3f-c57fbba0ca79en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85052930332&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/84444340/SCI_Tapani_etal_Time_varying_EEG_Correlations_International_Journal_of_Neural_Systems_2019.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/101402
dc.identifier.urnURN:NBN:fi:aalto-2020123160223
dc.language.isoenen
dc.publisherWorld Scientific
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/656131/EU//APEen_US
dc.relation.ispartofseriesInternational Journal of Neural Systemsen
dc.relation.ispartofseriesVolume 29, issue 4en
dc.rightsopenAccessen
dc.subject.keywordElectroencephalographyen_US
dc.subject.keywordneonatal seizure detectionen_US
dc.subject.keywordnonstationary signal processingen_US
dc.subject.keywordsupport vector machinesen_US
dc.subject.keywordtime-frequency distributionsen_US
dc.titleTime-Varying EEG Correlations Improve Automated Neonatal Seizure Detectionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files