Diagnosis of schizophrenia from EEG with deep neural networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorHämäläinen, Wilhelmiina
dc.contributor.authorSiket-Szász, Péter
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.supervisorBlankertz, Benjamin
dc.date.accessioned2023-06-18T17:04:21Z
dc.date.available2023-06-18T17:04:21Z
dc.date.issued2023-06-12
dc.description.abstractThis thesis analyzes the performance of recent advances in the automatic diagnosis of schizophrenia using deep learning models on EEG data. A dataset of 81 subjects containing healthy controls (HC) and schizophrenic subjects (SZ) is used. Traditional ERP classification using LDA and shrinkage LDA is performed to get a better understanding of the separability of the data and 7 different CNN models are trained to classify the same data. The results show that linear classification using LDA performs poorly on the data, while for CNNs, it's the overfitting capabilities of the models that cause them to not generalize well on unseen data. This overfitting can go unnoticed if errors in validation are made. In that case, the performance appears much better due to the training and validation sets not being independent. This thesis shows that automatic diagnosis using deep learning models is still difficult with current methods due to the high variability of EEG signals between subjects.en
dc.format.extent82+5
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/121641
dc.identifier.urnURN:NBN:fi:aalto-202306184013
dc.language.isoenen
dc.programmeMaster's Programme in ICT Innovationfi
dc.programme.majorData Sciencefi
dc.programme.mcodeSCI3115fi
dc.subject.keywordelectroencephalogramen
dc.subject.keywordlinear discriminant analysisen
dc.subject.keywordconvlutional neural networken
dc.subject.keywordschizophreniaen
dc.subject.keywordcross-validationen
dc.subject.keywordoverfittingen
dc.titleDiagnosis of schizophrenia from EEG with deep neural networksen
dc.typeG2 Pro gradu, diplomityöfi
dc.type.ontasotMaster's thesisen
dc.type.ontasotDiplomityöfi
local.aalto.electroniconlyyes
local.aalto.openaccessyes

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
master_Siket-Szász_Péter_2023.pdf
Size:
6.45 MB
Format:
Adobe Portable Document Format