Inverse finite-size scaling for high-dimensional significance analysis
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Xu, Yingying | en_US |
dc.contributor.author | Puranen, Santeri | en_US |
dc.contributor.author | Corander, Jukka | en_US |
dc.contributor.author | Kabashima, Yoshiyuki | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Kaski Samuel | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.organization | Tokyo Institute of Technology | en_US |
dc.contributor.organization | University of Helsinki | en_US |
dc.date.accessioned | 2018-08-01T13:35:00Z | |
dc.date.available | 2018-08-01T13:35:00Z | |
dc.date.issued | 2018-06-06 | en_US |
dc.description.abstract | We propose an efficient procedure for significance determination in high-dimensional dependence learning based on surrogate data testing, termed inverse finite-size scaling (IFSS). The IFSS method is based on our discovery of a universal scaling property of random matrices which enables inference about signal behavior from much smaller scale surrogate data than the dimensionality of the original data. As a motivating example, we demonstrate the procedure for ultra-high-dimensional Potts models with order of 1010 parameters. IFSS reduces the computational effort of the data-testing procedure by several orders of magnitude, making it very efficient for practical purposes. This approach thus holds considerable potential for generalization to other types of complex models. | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Xu, Y, Puranen, S, Corander, J & Kabashima, Y 2018, ' Inverse finite-size scaling for high-dimensional significance analysis ', Physical Review E, vol. 97, no. 6, 062112, pp. 1-9 . https://doi.org/10.1103/PhysRevE.97.062112 | en |
dc.identifier.doi | 10.1103/PhysRevE.97.062112 | en_US |
dc.identifier.issn | 2470-0045 | |
dc.identifier.issn | 2470-0053 | |
dc.identifier.other | PURE UUID: da24f220-7efd-4d55-9feb-3aabae209764 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/da24f220-7efd-4d55-9feb-3aabae209764 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85048212207&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/26472204/PhysRevE.97.062112.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/32926 | |
dc.identifier.urn | URN:NBN:fi:aalto-201808014327 | |
dc.language.iso | en | en |
dc.publisher | American Physical Society | |
dc.relation.ispartofseries | Physical Review E | en |
dc.relation.ispartofseries | Volume 97, issue 6, pp. 1-9 | en |
dc.rights | openAccess | en |
dc.title | Inverse finite-size scaling for high-dimensional significance analysis | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |