Inverse finite-size scaling for high-dimensional significance analysis

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorXu, Yingyingen_US
dc.contributor.authorPuranen, Santerien_US
dc.contributor.authorCorander, Jukkaen_US
dc.contributor.authorKabashima, Yoshiyukien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationTokyo Institute of Technologyen_US
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2018-08-01T13:35:00Z
dc.date.available2018-08-01T13:35:00Z
dc.date.issued2018-06-06en_US
dc.description.abstractWe propose an efficient procedure for significance determination in high-dimensional dependence learning based on surrogate data testing, termed inverse finite-size scaling (IFSS). The IFSS method is based on our discovery of a universal scaling property of random matrices which enables inference about signal behavior from much smaller scale surrogate data than the dimensionality of the original data. As a motivating example, we demonstrate the procedure for ultra-high-dimensional Potts models with order of 1010 parameters. IFSS reduces the computational effort of the data-testing procedure by several orders of magnitude, making it very efficient for practical purposes. This approach thus holds considerable potential for generalization to other types of complex models.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationXu, Y, Puranen, S, Corander, J & Kabashima, Y 2018, ' Inverse finite-size scaling for high-dimensional significance analysis ', Physical Review E, vol. 97, no. 6, 062112, pp. 1-9 . https://doi.org/10.1103/PhysRevE.97.062112en
dc.identifier.doi10.1103/PhysRevE.97.062112en_US
dc.identifier.issn2470-0045
dc.identifier.issn2470-0053
dc.identifier.otherPURE UUID: da24f220-7efd-4d55-9feb-3aabae209764en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/da24f220-7efd-4d55-9feb-3aabae209764en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85048212207&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/26472204/PhysRevE.97.062112.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/32926
dc.identifier.urnURN:NBN:fi:aalto-201808014327
dc.language.isoenen
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review Een
dc.relation.ispartofseriesVolume 97, issue 6, pp. 1-9en
dc.rightsopenAccessen
dc.titleInverse finite-size scaling for high-dimensional significance analysisen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files