Cascaded Split-and-Aggregate Learning with Feature Recombination for Pedestrian Attribute Recognition

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorYang, Yangen_US
dc.contributor.authorTan, Zichangen_US
dc.contributor.authorTiwari, Prayagen_US
dc.contributor.authorPandey, Hari Mohanen_US
dc.contributor.authorWan, Junen_US
dc.contributor.authorLei, Zhenen_US
dc.contributor.authorGuo, Guodongen_US
dc.contributor.authorLi, Stan Z.en_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.date.accessioned2021-08-04T06:41:38Z
dc.date.available2021-08-04T06:41:38Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2022-07-18en_US
dc.date.issued2021-10en_US
dc.description| openaire: EC/H2020/732894/EU//INTERVENE
dc.description.abstractMulti-label pedestrian attribute recognition in surveillance is inherently a challenging task due to poor imaging quality, large pose variations, and so on. In this paper, we improve its performance from the following two aspects: 1) We propose a cascaded Split-and-Aggregate Learning (SAL) to capture both the individuality and commonality for all attributes, with one at feature map level and the other at the feature vector level. For the former, we split the features of each attribute by using a designed attribute-specific attention module (ASAM). For the later, the split features for each attribute are learned by using constrained losses. In both modules, the split features are aggregated by using several convolutional or fully connected layers. 2) We propose a Feature Recombination (FR) that conducts a random shuffle based on the split features over a batch of samples to synthesize more training samples, which spans the potential samples' variability. To the end, we formulate a unified framework, named CAScaded Split-and-Aggregate Learning with Feature Recombination (CAS-SAL-FR), to learn the above modules jointly and concurrently. Experiments on five popular benchmarks, including RAP, PA-100K, PETA, Market-1501 and Duke attribute datasets, show the proposed CAS-SAL-FR achieves new state-of-the-art performance.en
dc.description.versionPeer revieweden
dc.format.extent13
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationYang, Y, Tan, Z, Tiwari, P, Pandey, H M, Wan, J, Lei, Z, Guo, G & Li, S Z 2021, ' Cascaded Split-and-Aggregate Learning with Feature Recombination for Pedestrian Attribute Recognition ', International Journal of Computer Vision, vol. 129, no. 10, pp. 2731-2744 . https://doi.org/10.1007/s11263-021-01499-zen
dc.identifier.doi10.1007/s11263-021-01499-zen_US
dc.identifier.issn0920-5691
dc.identifier.otherPURE UUID: 6a1920f4-6a99-4899-8191-87649bc9a703en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/6a1920f4-6a99-4899-8191-87649bc9a703en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85110645826&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/65142198/VISI_D_20_00405R2.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/108891
dc.identifier.urnURN:NBN:fi:aalto-202108048135
dc.language.isoenen
dc.publisherSpringer Netherlands
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/732894/EU//INTERVENEen_US
dc.relation.ispartofseriesINTERNATIONAL JOURNAL OF COMPUTER VISIONen
dc.rightsopenAccessen
dc.titleCascaded Split-and-Aggregate Learning with Feature Recombination for Pedestrian Attribute Recognitionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files