Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2022-07-05

Major/Subject

Mcode

Degree programme

Language

en

Pages

Series

PNAS Nexus, Volume 1, issue 3

Abstract

At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution—individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.

Description

pgac093

Keywords

COVID-19, social distancing, hygiene, policy support, public health measures

Other note

Citation

Pavlović, T, Azevedo, F, De, K, Riaño-Moreno, J C, Maglić, M, Gkinopoulos, T, Donnelly-Kehoe, P A, Payán-Gómez, C, Huang, G, Kantorowicz, J, Birtel, M D, Schönegger, P, Capraro, V, Santamaría-García, H, Yucel, M, Ibanez, A, Rathje, S, Wetter, E, Stanojević, D, van Prooijen, J-W, Hesse, E, Elbaek, C T, Franc, R, Pavlović, Z, Mitkidis, P, Cichocka, A, Gelfand, M, Alfano, M, Ross, R M, Sjåstad, H, Nezlek, J B, Cislak, A, Lockwood, P, Abts, K, Agadullina, E, Amodio, D M, Apps, M A J, Aruta, J J B, Besharati, S, Bor, A, Choma, B, Cunningham, W, Ejaz, W, Farmer, H, Findor, A, Gjoneska, B, Gualda, E, Huynh, T L D, Imran, M A, Israelashvili, J, Kantorowicz-Reznichenko, E, Krouwel, A, Kutiyski, Y, Laakasuo, M, Lamm, C, Levy, J, Leygue, C, Lin, M-J, Mansoor, M S, Marie, A, Mayiwar, L, Mazepus, H, McHugh, C, Olsson, A, Otterbring, T, Packer, D, Palomäki, J, Perry, A, Petersen, M B, Puthillam, A, Rothmund, T, Schmid, P C, Stadelmann, D, Stoica, A, Stoyanov, D, Stoyanova, K, Tewari, S, Todosijević, B, Torgler, B, Tsakiris, M, Tung, H H, Umbreș, R G, Vanags, E, Vlasceanu, M, Vonasch, A J, Zhang, Y, Abad, M, Adler, E, Mdarhri, H A, Antazo, B, Ay, F C, Ba, M E H, Barbosa, S, Bastian, B, Berg, A, Białek, M, Bilancini, E, Bogatyreva, N, Boncinelli, L, Booth, J E, Borau, S, Buchel, O, de Carvalho, C F, Celadin, T, Cerami, C, Chalise, H N, Cheng, X, Cian, L, Cockcroft, K, Conway, J, Córdoba-Delgado, M A, Crespi, C, Crouzevialle, M, Cutler, J, Cypryańska, M, Dabrowska, J, Davis, V H, Minda, J P, Dayley, P N, Delouvée, S, Denkovski, O, Dezecache, G, Dhaliwal, N A, Diato, A, Di Paolo, R, Dulleck, U, Ekmanis, J, Etienne, T W, Farhana, H H, Farkhari, F, Fidanovski, K, Flew, T, Fraser, S, Frempong, R B, Fugelsang, J, Gale, J, García-Navarro, E B, Garladinne, P, Gray, K, Griffin, S M, Gronfeldt, B, Gruber, J, Halperin, E, Herzon, V, Hruška, M, Hudecek, M F C, Isler, O, Jangard, S, Jørgensen, F, Keudel, O, Koppel, L, Koverola, M, Kunnari, A, Leota, J, Lermer, E, Li, C, Longoni, C, McCashin, D, Mikloušić, I, Molina-Paredes, J, Monroy-Fonseca, C, Morales-Marente, E, Moreau, D, Muda, R, Myer, A, Nash, K, Nitschke, J P, Nurse, M S, de Mello, V O, Palacios-Galvez, M S, Pan, Y, Papp, Z, Pärnamets, P, Paruzel-Czachura, M, Perander, S, Pitman, M, Raza, A, Rêgo, G G, Robertson, C, Rodríguez-Pascual, I, Saikkonen, T, Salvador-Ginez, O, Sampaio, W M, Santi, G C, Schultner, D, Schutte, E, Scott, A, Skali, A, Stefaniak, A, Sternisko, A, Strickland, B, Thomas, J P, Tinghög, G, Traast, I J, Tucciarelli, R, Tyrala, M, Ungson, N D, Uysal, M S, Van Rooy, D, Västfjäll, D, Vieira, J B, von Sikorski, C, Walker, A C, Watermeyer, J, Willardt, R, Wohl, M J A, Wójcik, A D, Wu, K, Yamada, Y, Yilmaz, O, Yogeeswaran, K, Ziemer, C-T, Zwaan, R A, Boggio, P S, Whillans, A, Van Lange, P A M, Prasad, R, Onderco, M, O'Madagain, C, Nesh-Nash, T, Laguna, O M, Kubin, E, Gümren, M, Fenwick, A, Ertan, A S, Bernstein, M J, Amara, H & Van Bavel, J J 2022, ' Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning ', PNAS Nexus, vol. 1, no. 3, pgac093 . https://doi.org/10.1093/pnasnexus/pgac093