Fast Low-Latency Convolution by Low-Rank Tensor Approximation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJälmby, Martinen_US
dc.contributor.authorElvander, Filipen_US
dc.contributor.authorWaterschoot, Toon vanen_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorStructured and Stochastic Modelingen
dc.contributor.organizationBrno University of Technologyen_US
dc.date.accessioned2024-01-17T08:25:03Z
dc.date.available2024-01-17T08:25:03Z
dc.date.issued2023-06-10en_US
dc.description.abstractIn this paper we consider fast time-domain convolution, exploiting low-rank properties of an impulse response (IR). This reduces the computational complexity, speeding up the convolution, without introducing latency. Previous work has considered a truncated singular value decomposition (SVD) of a two-dimensional matricization, or reshaping, of the IR. We here build upon this idea, by providing an algorithm for convolution with a three-dimensional tensorization of the IR. We provide simulations using real-life acoustic room impulse responses (RIRs) of various lengths, convolving them with music, as well as speech signals. The proposed algorithm is shown to outperform the comparable existing algorithm in terms of signal quality degradation, for all considered scenarios, without increasing the computational complexity, or the memory usage.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.extent1-5
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJälmby, M, Elvander, F & Waterschoot, T V 2023, Fast Low-Latency Convolution by Low-Rank Tensor Approximation . in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) ., 10095908, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, pp. 1-5, IEEE International Conference on Acoustics, Speech, and Signal Processing, Rhodes Island, Greece, 04/06/2023 . https://doi.org/10.1109/ICASSP49357.2023.10095908en
dc.identifier.doi10.1109/ICASSP49357.2023.10095908en_US
dc.identifier.isbn978-1-7281-6328-4
dc.identifier.isbn978-1-7281-6327-7
dc.identifier.issn2379-190X
dc.identifier.otherPURE UUID: 82c341dc-1028-491f-a51f-7d9139314f9aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/82c341dc-1028-491f-a51f-7d9139314f9aen_US
dc.identifier.otherPURE LINK: https://ieeexplore.ieee.org/document/10095908/en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85177582935&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/133648948/FastLow-latencyConvolutionByLow-rankTensorApproximation.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125839
dc.identifier.urnURN:NBN:fi:aalto-202401171514
dc.language.isoenen
dc.relation.ispartofIEEE International Conference on Acoustics, Speech, and Signal Processingen
dc.relation.ispartofseriesICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)en
dc.relation.ispartofseriesProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processingen
dc.rightsopenAccessen
dc.subject.keywordDegradationen_US
dc.subject.keywordTensorsen_US
dc.subject.keywordConvolutionen_US
dc.subject.keywordComputational modelingen_US
dc.subject.keywordSignal processing algorithmsen_US
dc.subject.keywordApproximation algorithmsen_US
dc.subject.keywordAcousticsen_US
dc.titleFast Low-Latency Convolution by Low-Rank Tensor Approximationen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files