In silico design of a thermal atomic layer etch process of cobalt

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKondati Natarajan, Sureshen_US
dc.contributor.authorNolan, Michaelen_US
dc.contributor.authorTheofanis, Patricken_US
dc.contributor.authorMokhtarzadeh, Charlesen_US
dc.contributor.authorClendenning, Scott B.en_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorMicrosystems Technologyen
dc.contributor.organizationUniversity College Corken_US
dc.contributor.organizationIntelen_US
dc.date.accessioned2021-04-20T06:50:52Z
dc.date.available2021-04-20T06:50:52Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2022-03-03en_US
dc.date.issued2021-03-01en_US
dc.descriptionPublished under license by AVS.
dc.description.abstractThermal atomic layer etch (ALE), facilitating the removal of up to one monolayer of material per cycle, is growing in importance for thin-film processing. The number of available ALE processes is much smaller than for atomic layer deposition, its complementary growth process. Quantum chemical simulations are a key approach in the development of new thermal ALE processes, however, methodologies and workflows need to be developed. In this regard, the present paper reports a simulation-based approach toward the development of new thermal ALE processes using metallic cobalt as a test case. We demonstrate a predictive process discovery approach for ALE in which target volatile etch products and the corresponding gas phase reactants are chosen from the literature, an overall ALE cycle for each combination of reactant is investigated for thermochemical favorability, and the detailed mechanisms of the individual reaction steps in the proposed ALE processes are studied using density functional theory. From these results, we derive a temperature-pressure process window for each combination of reactants at typical reactant and product pressures allowing the selection of an ALE process window. For Co ALE, we investigated propene, butyne, silane, and trimethyl silane as a first pulse reactant and CO as the second pulse reactant. We propose propene and CO as the best combination of reactants for Co ALE. Propene adsorbs with sufficient strength to the target Co atom at temperatures below the CO decomposition temperature of 440 K, which results in the lowest energy etch species. This approach is equally relevant for the ALE process design of elemental, binary, and ternary materials.en
dc.description.versionPeer revieweden
dc.format.extent12
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKondati Natarajan, S, Nolan, M, Theofanis, P, Mokhtarzadeh, C & Clendenning, S B 2021, ' In silico design of a thermal atomic layer etch process of cobalt ', Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, vol. 39, no. 2, 022603 . https://doi.org/10.1116/6.0000804en
dc.identifier.doi10.1116/6.0000804en_US
dc.identifier.issn0734-2101
dc.identifier.issn1520-8559
dc.identifier.otherPURE UUID: fa246abc-c19a-4e59-8836-80fb7a51ff5een_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/fa246abc-c19a-4e59-8836-80fb7a51ff5een_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85101981257&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/61673504/ELEC_Natarajan_etal_In_Siloco_Design_JVacSciTec_2021_finalpublishedversion.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/106940
dc.identifier.urnURN:NBN:fi:aalto-202104206234
dc.language.isoenen
dc.publisherAVS Science and Technology Society
dc.relation.ispartofseriesJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Filmsen
dc.relation.ispartofseriesVolume 39, issue 2en
dc.rightsopenAccessen
dc.titleIn silico design of a thermal atomic layer etch process of cobalten
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
Files