Discovering heritable modes of MEG spectral power

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLeppäaho, Eemelien_US
dc.contributor.authorRenvall, Hannaen_US
dc.contributor.authorSalmela, Elinaen_US
dc.contributor.authorKere, Juhaen_US
dc.contributor.authorSalmelin, Riittaen_US
dc.contributor.authorKaski, Samuelen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.departmentDepartment of Neuroscience and Biomedical Engineeringen
dc.contributor.groupauthorCentre of Excellence in Computational Inference, COINen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2019-09-03T13:44:03Z
dc.date.available2019-09-03T13:44:03Z
dc.date.issued2019-04-01en_US
dc.description.abstractBrain structure and many brain functions are known to be genetically controlled, but direct links between neuroimaging measures and their underlying cellular‐level determinants remain largely undiscovered. Here, we adopt a novel computational method for examining potential similarities in high‐dimensional brain imaging data between siblings. We examine oscillatory brain activity measured with magnetoencephalography (MEG) in 201 healthy siblings and apply Bayesian reduced‐rank regression to extract a low‐dimensional representation of familial features in the participants' spectral power structure. Our results show that the structure of the overall spectral power at 1–90 Hz is a highly conspicuous feature that not only relates siblings to each other but also has very high consistency within participants' own data, irrespective of the exact experimental state of the participant. The analysis is extended by seeking genetic associations for low‐dimensional descriptions of the oscillatory brain activity. The observed variability in the MEG spectral power structure was associated with SDK1 (sidekick cell adhesion molecule 1) and suggestively with several other genes that function, for example, in brain development. The current results highlight the potential of sophisticated computational methods in combining molecular and neuroimaging levels for exploring brain functions, even for high‐dimensional data limited to a few hundred participants.en
dc.description.versionPeer revieweden
dc.format.extent12
dc.format.extent1391-1402
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLeppäaho, E, Renvall, H, Salmela, E, Kere, J, Salmelin, R & Kaski, S 2019, ' Discovering heritable modes of MEG spectral power ', Human Brain Mapping, vol. 40, no. 5, pp. 1391-1402 . https://doi.org/10.1002/hbm.24454en
dc.identifier.doi10.1002/hbm.24454en_US
dc.identifier.issn1065-9471
dc.identifier.issn1097-0193
dc.identifier.otherPURE UUID: 38d10ae4-f727-4daa-82c6-6b0d411e7c0aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/38d10ae4-f727-4daa-82c6-6b0d411e7c0aen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85059349183&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/36413495/Lepp_aho_et_al_2019_Human_Brain_Mapping.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/40032
dc.identifier.urnURN:NBN:fi:aalto-201909035074
dc.language.isoenen
dc.publisherJohn Wiley & Sons Inc.
dc.relation.ispartofseriesHuman Brain Mappingen
dc.relation.ispartofseriesVolume 40, issue 5en
dc.rightsopenAccessen
dc.subject.keywordBayesian reduced-rank regressionen_US
dc.subject.keywordgenome-wide associationen_US
dc.subject.keywordGWASen_US
dc.subject.keywordheritabilityen_US
dc.subject.keywordmagnetoencephalographyen_US
dc.titleDiscovering heritable modes of MEG spectral poweren
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files