Learning spectrograms with convolutional spectral kernels

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorShen, Zheyangen_US
dc.contributor.authorHeinonen, Markusen_US
dc.contributor.authorKaski, Samuelen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorChiappa, Sen_US
dc.contributor.editorCalandra, Ren_US
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorProfessorship Lähdesmäki Harrien
dc.contributor.groupauthorCentre of Excellence in Molecular Systems Immunology and Physiology Research Group, SyMMysen
dc.contributor.groupauthorFinnish Center for Artificial Intelligence, FCAIen
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorCentre of Excellence in Computational Inference, COINen
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.date.accessioned2020-10-02T06:23:15Z
dc.date.available2020-10-02T06:23:15Z
dc.date.issued2020en_US
dc.description.abstractWe introduce the convolutional spectral kernel (CSK), a novel family of non-stationary, nonparametric covariance kernels for Gaussian process (GP) models, derived from the convolution between two imaginary radial basis functions. We present a principled framework to interpret CSK, as well as other deep probabilistic models, using approximated Fourier transform, yielding a concise representation of input-frequency spectrogram. Observing through the lens of the spectrogram, we provide insight on the interpretability of deep models. We then infer the functional hyperparameters using scalable variational and MCMC methods. On small- and medium-sized spatiotemporal datasets, we demonstrate improved generalization of GP models when equipped with CSK, and their capability to extract non-stationary periodic patterns.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationShen, Z, Heinonen, M & Kaski, S 2020, Learning spectrograms with convolutional spectral kernels . in S Chiappa & R Calandra (eds), The 23rd International Conference on Artificial Intelligence and Statistics . Proceedings of Machine Learning Research, vol. 108, JMLR, pp. 3826-3836, International Conference on Artificial Intelligence and Statistics, Palermo, Italy, 03/06/2020 . < http://proceedings.mlr.press/v108/shen20a.html >en
dc.identifier.issn2640-3498
dc.identifier.otherPURE UUID: 4f9cd155-eb16-49f4-8744-934da5500118en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/4f9cd155-eb16-49f4-8744-934da5500118en_US
dc.identifier.otherPURE LINK: http://proceedings.mlr.press/v108/shen20a.htmlen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/51777277/Shen_Learning_Spectrograms.20a.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/46785
dc.identifier.urnURN:NBN:fi:aalto-202010025750
dc.language.isoenen
dc.relation.ispartofInternational Conference on Artificial Intelligence and Statisticsen
dc.relation.ispartofseriesThe 23rd International Conference on Artificial Intelligence and Statisticsen
dc.relation.ispartofseriespp. 3826-3836en
dc.relation.ispartofseriesProceedings of Machine Learning Research ; Volume 108en
dc.rightsopenAccessen
dc.titleLearning spectrograms with convolutional spectral kernelsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files