Characterization of physical aging by time-resolved rheometry: fundamentals and application to bituminous binders
No Thumbnail Available
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2018-11-01
Department
Department of Chemical and Metallurgical Engineering
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
Rheologica Acta, Volume 57, issue 11, pp. 745-756
Abstract
Physical aging is a ubiquitous phenomenon in glassy materials and it is reflected, for example, in the time evolution of rheological properties under isothermal conditions. In this paper, time-resolved rheometry (TRR) is used to characterize this time-dependent rheological behavior. The fundamentals of TRR are briefly reviewed, and its advantages over the traditional Struik’s physical aging test protocol are discussed. In the experimental section, the TRR technique is applied to study physical aging in bituminous binders. Small-diameter parallel plate (SDPP) rheometry is employed to perform cyclic frequency sweep (CFS) experiments over extended periods of time (from one to 8.6 days). The results verify that the mutation of rheological properties is relatively slow during physical aging (mutation number N′mu << 1), thus allowing rheological measurements on a quasi-stable sample. The effects of temperature, crystallinity, and styrene-butadiene-styrene (SBS) polymer modification on the physical aging of bitumen are evaluated. The time-aging time superposition is found to be valid both for unmodified and for polymer-modified bitumen. Vertical shifts are necessary, in addition to horizontal time-aging time shifts, to generate smooth master curves for highly SBS-modified bitumen.Description
Keywords
Bitumen, Physical aging, Sample mutation, Time-aging time superposition, Time-resolved rheometry
Other note
Citation
Laukkanen, O V, Winter, H H & Seppälä, J 2018, ' Characterization of physical aging by time-resolved rheometry : fundamentals and application to bituminous binders ', Rheologica Acta, vol. 57, no. 11, pp. 745-756 . https://doi.org/10.1007/s00397-018-1114-8