Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLehtinen, Arttuen_US
dc.contributor.authorGranberg, Fredricen_US
dc.contributor.authorLaurson, Lasseen_US
dc.contributor.authorNordlund, Kaien_US
dc.contributor.authorAlava, Mikkoen_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorComplex Systems and Materialsen
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2016-09-16T10:03:54Z
dc.date.issued2016-01-21en_US
dc.description.abstractThe stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 12(111){110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.en
dc.description.versionPeer revieweden
dc.format.extent1-9
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLehtinen, A, Granberg, F, Laurson, L, Nordlund, K & Alava, M 2016, ' Multiscale modeling of dislocation-precipitate interactions in Fe : From molecular dynamics to discrete dislocations ', Physical Review E, vol. 93, no. 1, 013309, pp. 1-9 . https://doi.org/10.1103/PhysRevE.93.013309en
dc.identifier.doi10.1103/PhysRevE.93.013309en_US
dc.identifier.issn1539-3755
dc.identifier.issn1550-2376
dc.identifier.otherPURE UUID: fb0a7201-a5cd-4af3-a203-db85225c4209en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/fb0a7201-a5cd-4af3-a203-db85225c4209en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=84955575375&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/4316603/PhysRevE.93.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/22053
dc.identifier.urnURN:NBN:fi:aalto-201609163935
dc.language.isoenen
dc.relation.ispartofseriesPHYSICAL REVIEW Een
dc.relation.ispartofseriesVolume 93, issue 1en
dc.rightsopenAccessen
dc.titleMultiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocationsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files