Modeling the effect of inhomogeneous compression of GDL on local transport phenomena in a PEM fuel cell
No Thumbnail Available
URL
Journal Title
Journal ISSN
Volume Title
Faculty of Information and Natural Sciences |
D4 Julkaistu kehittämis- tai tutkimusraportti taikka -selvitys
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
2008
Major/Subject
Mcode
Degree programme
Language
en
Pages
23
Series
Helsinki University of Technology publications in engineering physics. A, Teknillisen korkeakoulun teknillisen fysiikan julkaisuja. A, 854
Abstract
The effects of inhomogeneous compression of gas diffusion layers (GDLs) on local transport phenomena within a polymer electrolyte membrane (PEM) fuel cell were studied theoretically. The inhomogeneous compression induced by the rib/channel structure of the flow field plate causes partial deformation of the GDLs and significantly affects material parameters. The results suggest that inhomogeneous compression does not significantly affect the polarization behavior or gas-phase mass transport. However, the effect of inhomogeneous compression on the current density distribution is evident. Local current density under the channel was substantially smaller than under the rib when inhomogeneous compression was taken into account, while the current density distribution was fairly uniform for the model which excluded the effect of inhomogeneous compression. This is caused by the changes in the selective current path, which is determined by the combinations of conductivities of components and contact resistance between them. Despite the highly uneven current distribution and variation in material parameters as a function of GDL thickness, the temperature profile was relatively even over the active area for both modeled cases, contrary to predictions in previous studies. However, an abnormally high current density significantly accelerates deterioration of the membrane and is critical in terms of cell durability. Therefore, fuel cells should be carefully designed to minimize the harmful effects of inhomogeneous compression.Description
Keywords
inhomogeneous compression, gas diffusion layer, PEM fuel cell, mathematical model