Van der Waals interactions in density-functional theory: implementation and applications

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
School of Science | Doctoral thesis (article-based) | Defence date: 2012-01-20
Checking the digitized thesis and permission for publishing
Instructions for the author
Date
2012
Major/Subject
Mcode
Degree programme
Language
en
Pages
115
Series
Aalto University publication series DOCTORAL DISSERTATIONS, 6
Abstract
The density functional theory is, in principle, an exact ground-state method for interacting electrons. However, commonly applied local approximations make it severely unsuccessful for modelling materials where van der Waals interactions play a central role. The problem can be overcome by the van der Waals density-functional approach, which relies on a density functional with a built-in non-locality. This Thesis reflects on efforts towards efficient numerical implementation of the approach and its application to a variety of problems such as molecule adsorption, self-assembly and defects in graphite. Surprisingly for the condensed-matter community, in cases where a molecule is attached to a surface by the "weak" van der Waals forces - they tend to be not so weak after all. These forces can seriously influence kinetics of various physical and chemical processes on surfaces or in layered solids. Hence, ignoring or mishandling the van der Waals interaction potentially leads to quantitatively and sometimes even qualitatively wrong results.
Description
Supervising professor
Puska, Martti J.
Thesis advisor
Puska, Martti J.
Keywords
Density-functional theory, van der Waals interactions, physisorption, graphite
Other note
Parts
  • [Publication 1]: Andris Gulans, Martti J. Puska and Risto M. Nieminen. Linear-scaling self-consistent implementation of the van der Waals density functional. Physical Review B, 79, 201105, July 2009.
  • [Publication 2]: O. H. Pakarinen, J. M. Mativetsky, A. Gulans, M. J. Puska, A. S. Foster and P. Grutter. Role of van der Waals forces in the adsorption and diffusion of organic molecules on an insulating surface. Physical Review B, 80, 085401, August 2009.
  • [Publication 3]: M. Mura, A. Gulans, T. Thonhauser and L. Kantorovich. Role of van der Waals interaction in forming molecule-metal junctions: flat organic molecules on the Au(111) surface. Physical Chemistry Chemical Physics, 12, 4759, February 2010.
  • [Publication 4]: Karen Johnston, Andris Gulans, Tuukka Verho and Martti J. Puska. Adsorption structures of phenol on the Si(001)-(2_1) surface calculated using density functional theory. Physical Review B, 81, 235428, June 2010.
  • [Publication 5]: Andris Gulans, Arkady V. Krasheninnikov, Martti J. Puska and Risto M. Nieminen. Bound and free self-interstitial defects in graphite and bilayer graphene: A computational study. Physical Review B, 81, 235428, July 2011.
Citation