Engineering the NASICON Electrolyte/Na Anode Interface by Tuning the Phase of Electrolyte for Solid-State Sodium Battery

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLiu, Huien_US
dc.contributor.authorXing, Yizhien_US
dc.contributor.authorChen, Ningen_US
dc.contributor.authorWu, Jinzeen_US
dc.contributor.authorLi, Yongdanen_US
dc.contributor.authorZhang, Cuijuanen_US
dc.contributor.departmentDepartment of Chemical and Metallurgical Engineeringen
dc.contributor.groupauthorIndustrial chemistryen
dc.contributor.organizationTianjin Universityen_US
dc.contributor.organizationUniversity of Science and Technology Beijingen_US
dc.date.accessioned2023-12-11T09:50:52Z
dc.date.available2023-12-11T09:50:52Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2024-10-16en_US
dc.date.issued2023-10-24en_US
dc.descriptionFunding Information: This work was funded by the Natural Science Foundation of Tianjin (18JCQNJC02800). Publisher Copyright: © 2023 American Chemical Society.
dc.description.abstractThe commercialization of all-solid-state sodium batteries is currently mainly inhibited by the poor interface between the solid-state electrolyte and electrode. Herein, the interface between NASICON electrolyte and Na anode is engineered by tuning the phase of NASICON with the composition of Na3.36Zr1.64Sc0.36Si2PO12 (NZSSP), which was prepared by the solid-state reactive sintering method. The phase is adjusted by varying the sintering temperature (900-1150 °C) and investigated by X-ray diffraction Rietveld refinement. The sintered NZSSP samples are dominated by the rhombohedral NASICON phase, and its content increases with the sintering temperature, 97% for the 1150 °C-sintered sample, whereas the Na3Zr2Si2PO12 (NZSP) sample is dominated by the monoclinic NASICON. The scanning electron microscopy and X-ray photoelectron spectroscopy results reveal that the surface microstructure and composition are similar. However, the interfacial impedance (Rinter) between solid electrolyte and Na anode and the critical current density (CCD) are quite different; Rinter decreases and CCD increases with the sintering temperature. The 1150 °C-sintered NZSSP has significantly lower Rinter (4.7 vs 316.4 Ω cm2) and higher CCD (0.85 vs 0.1 mA cm-2) compared with NZSP at 30 °C. The full battery Na/NZSSP/Na3V2(PO4)3 can be stably cycled at 1C for 350 cycles. The contact angle measurement and adsorption energy calculation show that the adhering property of NASICON with Na plays a dominating role. The rhombohedral NASICON exhibits much greater adsorption energy to Na and lower contact angle, which is beneficial for the interfacial property and thus the Na plating/stripping processes. This work demonstrates that engineering the phase of the NASICON electrolyte is an effective strategy to optimize the interfacial property between NASICON and the Na anode.en
dc.description.versionPeer revieweden
dc.format.extent8686–8694
dc.identifier.citationLiu, H, Xing, Y, Chen, N, Wu, J, Li, Y & Zhang, C 2023, ' Engineering the NASICON Electrolyte/Na Anode Interface by Tuning the Phase of Electrolyte for Solid-State Sodium Battery ', Chemistry of Materials, vol. 35, no. 20, pp. 8686–8694 . https://doi.org/10.1021/acs.chemmater.3c01922en
dc.identifier.doi10.1021/acs.chemmater.3c01922en_US
dc.identifier.issn0897-4756
dc.identifier.issn1520-5002
dc.identifier.otherPURE UUID: c4d188f9-8c56-4b54-9291-4a5a73a2b507en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c4d188f9-8c56-4b54-9291-4a5a73a2b507en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85176965763&partnerID=8YFLogxKen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/124888
dc.identifier.urnURN:NBN:fi:aalto-202312117256
dc.language.isoenen
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesChemistry of Materialsen
dc.relation.ispartofseriesVolume 35, issue 20en
dc.rightsembargoedAccessen
dc.titleEngineering the NASICON Electrolyte/Na Anode Interface by Tuning the Phase of Electrolyte for Solid-State Sodium Batteryen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
Files