Packaging DNA origami into viral protein cages

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A3 Kirjan tai muun kokoomateoksen osa
Date
2018-01-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
11
267-277
Series
Virus-Derived Nanoparticles for Advanced Technologies, Volume 1776, Methods in Molecular Biology
Abstract
The DNA origami technique is a widely used method to create customized, complex, spatially well-defined two-dimensional (2D) and three-dimensional (3D) DNA nanostructures. These structures have huge potential to serve as smart drug-delivery vehicles and molecular devices in various nanomedical and biotechnological applications. However, so far only little is known about the behavior of these novel structures in living organisms or in cell culture/tissue models. Moreover, enhancing pharmacokinetic bioavailability and transfection properties of such structures still remains a challenge. One intriguing approach to overcome these issues is to coat DNA origami nanostructures with proteins or lipid membranes. Here, we show how cowpea chlorotic mottle virus (CCMV) capsid proteins (CPs) can be used for coating DNA origami nanostructures. We present a method for disassembling native CCMV particles and isolating the pure CP dimers, which can further bind and encapsulate a rectangular DNA origami shape. Owing to the highly programmable nature of DNA origami, packaging of DNA nanostructures into viral protein cages could find imminent uses in enhanced targeting and cellular delivery of various active nano-objects, such as enzymes and drug molecules.
Description
Keywords
CCMV, DNA nanotechnology, DNA origami, Electrostatic assembly, Nucleic acids, Self-assembly, Virus capsid protein
Other note
Citation
Linko , V , Mikkilä , J & Kostiainen , M A 2018 , Packaging DNA origami into viral protein cages . in C Wege & G P Lomonossoff (eds) , Virus-Derived Nanoparticles for Advanced Technologies . vol. 1776 , Methods in Molecular Biology , vol. 1776 , Springer , pp. 267-277 . https://doi.org/10.1007/978-1-4939-7808-3_18