Doping-driven topological polaritons in graphene/α-MoO3 heterostructures

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHu, Haien_US
dc.contributor.authorChen, Naen_US
dc.contributor.authorTeng, Hanchaoen_US
dc.contributor.authorYu, Renwenen_US
dc.contributor.authorQu, Yunpengen_US
dc.contributor.authorSun, Jianzheen_US
dc.contributor.authorXue, Mengfeien_US
dc.contributor.authorHu, Deboen_US
dc.contributor.authorWu, Binen_US
dc.contributor.authorLi, Chien_US
dc.contributor.authorChen, Jianingen_US
dc.contributor.authorLiu, Mengkunen_US
dc.contributor.authorSun, Zhipeien_US
dc.contributor.authorLiu, Yunqien_US
dc.contributor.authorLi, Peiningen_US
dc.contributor.authorFan, Shanhuien_US
dc.contributor.authorGarcía de Abajo, F. Javieren_US
dc.contributor.authorDai, Qingen_US
dc.contributor.departmentDepartment of Electronics and Nanoengineeringen
dc.contributor.groupauthorCentre of Excellence in Quantum Technology, QTFen
dc.contributor.groupauthorZhipei Sun Groupen
dc.contributor.organizationNational Center for Nanoscience and Technology Beijingen_US
dc.contributor.organizationBarcelona Institute of Science and Technologyen_US
dc.contributor.organizationPeking Universityen_US
dc.contributor.organizationCAS - Institute of Physicsen_US
dc.contributor.organizationStony Brook Universityen_US
dc.contributor.organizationHuazhong University of Science and Technologyen_US
dc.contributor.organizationStanford Universityen_US
dc.date.accessioned2022-09-14T05:56:06Z
dc.date.available2022-09-14T05:56:06Z
dc.date.issued2022-09en_US
dc.descriptionFunding Information: We acknowledge P. Alonso-González and J. Duan (Departamento de Física, Universidad de Oviedo) for valuable discussions and constructive comments. This work was supported by the National Key Research and Development Program of China (grant no. 2021YFA1201500, to Q.D.; 2020YFB2205701, to H.H.), the National Natural Science Foundation of China (grant nos. 51902065, 52172139 to H.H.; 51925203, U2032206, 52072083 and 51972072, to Q.D.), Beijing Municipal Natural Science Foundation (grant no. 2202062, to H.H.) and the Strategic Priority Research Program of Chinese Academy of Sciences (grant nos. XDB30020100 and XDB30000000, to Q.D.). F.J.G.d.A. acknowledges the ERC (Advanced grant no. 789104-eNANO), the Spanish MICINN (PID2020-112625GB-I00 and SEV2015-0522) and the CAS President’s International Fellowship Initiative for 2021. S.F. acknowledges the support of the US Department of Energy (grant no. DE-FG02-07ER46426). Z.S. acknowledges the Academy of Finland (grant nos. 314810, 333982, 336144 and 336818), The Business Finland (ALDEL), the Academy of Finland Flagship Programme (320167, PREIN), the European Union’s Horizon 2020 research and innovation program (820423, S2QUIP and 965124, FEMTOCHIP), the EU H2020-MSCA-RISE-872049 (IPN-Bio) and the ERC (834742). P.L. acknowledges the National Natural Science Foundation of China (grant no. 62075070). | openaire: EC/H2020/820423/EU//S2QUIP | openaire: EC/H2020/834742/EU//ATOP | openaire: EC/H2020/965124/EU//FEMTOCHIP
dc.description.abstractControl over charge carrier density provides an efficient way to trigger phase transitions and modulate the optoelectronic properties of materials. This approach can also be used to induce topological transitions in the optical response of photonic systems. Here we report a topological transition in the isofrequency dispersion contours of hybrid polaritons supported by a two-dimensional heterostructure consisting of graphene and α-phase molybdenum trioxide. By chemically changing the doping level of graphene, we observed that the topology of polariton isofrequency surfaces transforms from open to closed shapes as a result of doping-dependent polariton hybridization. Moreover, when the substrate was changed, the dispersion contour became dominated by flat profiles at the topological transition, thus supporting tunable diffractionless polariton propagation and providing local control over the optical contour topology. We achieved subwavelength focusing of polaritons down to 4.8% of the free-space light wavelength by using a 1.5-μm-wide silica substrate as an in-plane lens. Our findings could lead to on-chip applications in nanoimaging, optical sensing and manipulation of energy transfer at the nanoscale.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHu, H, Chen, N, Teng, H, Yu, R, Qu, Y, Sun, J, Xue, M, Hu, D, Wu, B, Li, C, Chen, J, Liu, M, Sun, Z, Liu, Y, Li, P, Fan, S, García de Abajo, F J & Dai, Q 2022, ' Doping-driven topological polaritons in graphene/α-MoO 3 heterostructures ', Nature Nanotechnology, vol. 17, no. 9, ARTN s41565-022-01185-2, pp. 940-946 . https://doi.org/10.1038/s41565-022-01185-2en
dc.identifier.doi10.1038/s41565-022-01185-2en_US
dc.identifier.issn1748-3387
dc.identifier.otherPURE UUID: 9a28dd76-ef3d-472a-8897-0025b1f6fd18en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/9a28dd76-ef3d-472a-8897-0025b1f6fd18en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85136265556&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/87920632/Hu_Doping_driven_topological_polaritons.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/116785
dc.identifier.urnURN:NBN:fi:aalto-202209145589
dc.language.isoenen
dc.publisherNature Publishing Group
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/965124/EU//FEMTOCHIPen_US
dc.relation.ispartofseriesNature Nanotechnologyen
dc.rightsopenAccessen
dc.titleDoping-driven topological polaritons in graphene/α-MoO3 heterostructuresen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files